Satellite Pose Estimation with Deep Landmark Regression and Nonlinear Pose Refinement

被引:96
|
作者
Chen, Bo [1 ]
Cao, Jiewei [1 ]
Parra, Alvaro [1 ]
Chin, Tat-Jun [1 ]
机构
[1] Univ Adelaide, Sch Comp Sci, Adelaide, SA 5005, Australia
来源
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW) | 2019年
基金
澳大利亚研究理事会;
关键词
D O I
10.1109/ICCVW.2019.00343
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an approach to estimate the 6DOF pose of a satellite, relative to a canonical pose, from a single image. Such a problem is crucial in many space proximity operations, such as docking, debris removal, and inter-spacecraft communications. Our approach combines machine learning and geometric optimisation, by predicting the coordinates of a set of landmarks in the input image, associating the landmarks to their corresponding 3D points on an a priori reconstructed 3D model, then solving for the object pose using non-linear optimisation. Our approach is not only novel for this specific pose estimation task, which helps to further open up a relatively new domain for machine learning and computer vision, but it also demonstrates superior accuracy and won the first place in the recent Kelvins Pose Estimation Challenge organised by the European Space Agency (ESA).
引用
收藏
页码:2816 / 2824
页数:9
相关论文
共 50 条
  • [41] FilterformerPose: Satellite Pose Estimation Using Filterformer
    Ye, Ruida
    Wang, Lifen
    Ren, Yuan
    Wang, Yujing
    Chen, Xiaocen
    Liu, Yufei
    SENSORS, 2023, 23 (20)
  • [42] Revisiting Monocular Satellite Pose Estimation With Transformer
    Wang, Zi
    Zhang, Zhuo
    Sun, Xiaoliang
    Li, Zhang
    Yu, Qifeng
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2022, 58 (05) : 4279 - 4294
  • [43] Vision-Based Satellite Recognition and Pose Estimation Using Gaussian Process Regression
    Zhang, Haopeng
    Zhang, Cong
    Jiang, Zhiguo
    Yao, Yuan
    Meng, Gang
    INTERNATIONAL JOURNAL OF AEROSPACE ENGINEERING, 2019, 2019
  • [44] Conditional Regression Forests for Human Pose Estimation
    Sun, Min
    Kohli, Pushmeet
    Shotton, Jamie
    2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 3394 - 3401
  • [45] Sparse Bayesian regression for head pose estimation
    Ma, Yong
    Konishi, Yoshinori
    Kinoshita, Koichi
    Lao, Shihong
    Kawade, Masato
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS, 2006, : 507 - +
  • [46] Improved Pose Estimation by Inlier Refinement for Visual Odometry
    More, Rohan
    Kottath, Rahul
    Jegadeeshwaran, R.
    Kumar, Vipan
    Karar, Vinod
    Poddar, Shashi
    2017 IEEE 3RD INTERNATIONAL CONFERENCE ON SENSING, SIGNAL PROCESSING AND SECURITY (ICSSS), 2017, : 224 - 228
  • [47] Boosting Human Pose Estimation via Heatmap Refinement
    Jiang, Ling
    Liu, Zhuocheng
    Li, Kaige
    Wu, Wei
    MULTIMEDIA MODELING, MMM 2025, PT I, 2025, 15520 : 153 - 167
  • [48] Regression forests for head pose estimation analysis
    Dai, Shuling, 1600, Institute of Computing Technology (26):
  • [49] Metric Regression Forests for Human Pose Estimation
    Pons-Moll, Gerard
    Taylor, Jonathan
    Shotton, Jamie
    Hertzmann, Aaron
    Fitzgibbon, Andrew
    PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2013, 2013,
  • [50] Pose estimation and tracking using multivariate regression
    Thayananthan, Arasanathan
    Navaratnam, Ramanan
    Stenger, Bjoern
    Torr, Philip H. S.
    Cipolla, Roberto
    PATTERN RECOGNITION LETTERS, 2008, 29 (09) : 1302 - 1310