Insights into maize genome editing via CRISPR/Cas9

被引:26
|
作者
Agarwal, Astha [1 ]
Yadava, Pranjal [1 ,2 ]
Kumar, Krishan [1 ]
Singh, Ishwar [1 ]
Kaul, Tanushri [3 ]
Pattanayak, Arunava [4 ]
Agrawal, Pawan Kumar [5 ]
机构
[1] Indian Inst Maize Res, Indian Council Agr Res, Pusa Campus, New Delhi 110012, India
[2] Stanford Univ, Dept Biol, 385 Serra Mall, Stanford, CA 94305 USA
[3] Int Ctr Genet Engn & Biotechnol, Aruna Asaf Ali Marg, New Delhi 110067, India
[4] Indian Council Agr Res Vivekananda Parvatiya Kris, Almora 263601, Uttarakhand, India
[5] Indian Council Agr Res, Natl Agr Sci Fund, Krishi Anusandhan Bhavan 1, New Delhi 110012, India
关键词
CRISPR; Cas9; Gene editing; Genome modification; Maize; TARGETED MUTAGENESIS; OFF-TARGET; GUIDE RNA; HOMOLOGOUS RECOMBINATION; CAS9; RICE; TRANSCRIPTION; ENDONUCLEASE; SYSTEM; PLANTS;
D O I
10.1007/s12298-017-0502-3
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Maize is an important crop for billions of people as food, feed, and industrial raw material. It is a prime driver of the global agricultural economy as well as the livelihoods of millions of farmers. Genetic interventions, such as breeding, hybridization and transgenesis have led to increased productivity of this crop in the last 100 years. The technique of genome editing is the latest advancement in genetics. Genome editing can be used for targeted deletions, additions, and corrections in the genome, all aimed at genetic enhancement of crops. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR associated protein 9 (CRISPR/Cas9) system is a recent genome editing technique that is considered simple, precise, robust and the most revolutionary. This review summarizes the current state of the art and predicts future directions in the use of the CRISPR/Cas9 tool in maize crop improvement.
引用
收藏
页码:175 / 183
页数:9
相关论文
共 50 条
  • [41] Recent advances in CRISPR/Cas9 mediated genome editing in Bacillus subtilis
    Hong, Kun-Qiang
    Liu, Ding-Yu
    Chen, Tao
    Wang, Zhi-Wen
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2018, 34 (10)
  • [42] Efficient CRISPR/Cas9 genome editing with Citrus embryogenic cell cultures
    Dutt, Manjul
    Mou, Zhonglin
    Zhang, Xudong
    Tanwir, Sameena E.
    Grosser, Jude W.
    BMC BIOTECHNOLOGY, 2020, 20 (01)
  • [43] Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression
    Long, Lu
    Guo, Dan-Dan
    Gao, Wei
    Yang, Wen-Wen
    Hou, Li-Pan
    Ma, Xiao-Nan
    Miao, Yu-Chen
    Botella, Jose Ramon
    Song, Chun-Peng
    PLANT METHODS, 2018, 14
  • [44] Genome Editing in Cotton with the CRISPR/Cas9 System
    Gao, Wei
    Long, Lu
    Tian, Xinquan
    Xu, Fuchun
    Liu, Ji
    Singh, Prashant K.
    Botella, Jose R.
    Song, Chunpeng
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [45] CRISPR/CAS9, the King of Genome Editing Tools
    Bannikov, A. V.
    Lavrov, A. V.
    MOLECULAR BIOLOGY, 2017, 51 (04) : 514 - 525
  • [46] CRISPR/Cas9: an advanced tool for editing plant genomes
    Samanta, Milan Kumar
    Dey, Avishek
    Gayen, Srimonta
    TRANSGENIC RESEARCH, 2016, 25 (05) : 561 - 573
  • [47] An efficient sorghum protoplast assay for transient gene expression and gene editing by CRISPR/Cas9
    Meng, Ruirui
    Wang, Chenchen
    Wang, Lihua
    Liu, Yanlong
    Zhan, Qiuwen
    Zheng, Jiacheng
    Li, Jieqin
    PEERJ, 2020, 8
  • [48] Engineering the Caenorhabditis elegans genome with CRISPR/Cas9
    Waaijers, Selma
    Boxem, Mike
    METHODS, 2014, 68 (03) : 381 - 388
  • [49] Efficient Genome Editing in Apple Using a CRISPR/Cas9 system
    Nishitani, Chikako
    Hirai, Narumi
    Komori, Sadao
    Wada, Masato
    Okada, Kazuma
    Osakabe, Keishi
    Yamamoto, Toshiya
    Osakabe, Yuriko
    SCIENTIFIC REPORTS, 2016, 6
  • [50] Cutting back malaria: CRISPR/Cas9 genome editing of Plasmodium
    Lee, Marcus C. S.
    Lindner, Scott E.
    Lopez-Rubio, Jose-Juan
    Llinas, Manuel
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2019, 18 (05) : 281 - 289