Insights into maize genome editing via CRISPR/Cas9

被引:26
作者
Agarwal, Astha [1 ]
Yadava, Pranjal [1 ,2 ]
Kumar, Krishan [1 ]
Singh, Ishwar [1 ]
Kaul, Tanushri [3 ]
Pattanayak, Arunava [4 ]
Agrawal, Pawan Kumar [5 ]
机构
[1] Indian Inst Maize Res, Indian Council Agr Res, Pusa Campus, New Delhi 110012, India
[2] Stanford Univ, Dept Biol, 385 Serra Mall, Stanford, CA 94305 USA
[3] Int Ctr Genet Engn & Biotechnol, Aruna Asaf Ali Marg, New Delhi 110067, India
[4] Indian Council Agr Res Vivekananda Parvatiya Kris, Almora 263601, Uttarakhand, India
[5] Indian Council Agr Res, Natl Agr Sci Fund, Krishi Anusandhan Bhavan 1, New Delhi 110012, India
关键词
CRISPR; Cas9; Gene editing; Genome modification; Maize; TARGETED MUTAGENESIS; OFF-TARGET; GUIDE RNA; HOMOLOGOUS RECOMBINATION; CAS9; RICE; TRANSCRIPTION; ENDONUCLEASE; SYSTEM; PLANTS;
D O I
10.1007/s12298-017-0502-3
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Maize is an important crop for billions of people as food, feed, and industrial raw material. It is a prime driver of the global agricultural economy as well as the livelihoods of millions of farmers. Genetic interventions, such as breeding, hybridization and transgenesis have led to increased productivity of this crop in the last 100 years. The technique of genome editing is the latest advancement in genetics. Genome editing can be used for targeted deletions, additions, and corrections in the genome, all aimed at genetic enhancement of crops. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR associated protein 9 (CRISPR/Cas9) system is a recent genome editing technique that is considered simple, precise, robust and the most revolutionary. This review summarizes the current state of the art and predicts future directions in the use of the CRISPR/Cas9 tool in maize crop improvement.
引用
收藏
页码:175 / 183
页数:9
相关论文
共 57 条
[21]  
Mali P, 2013, NAT METHODS, V10, P957, DOI [10.1038/NMETH.2649, 10.1038/nmeth.2649]
[22]   CRISPR-Cas9 mediated genome editing in rice, advancements and future possibilities [J].
Mazumdar S. ;
Quick W.P. ;
Bandyopadhyay A. .
Indian Journal of Plant Physiology, 2016, 21 (4) :437-445
[23]   Precision Targeted Mutagenesis via Cas9 Paired Nickases in Rice [J].
Mikami, Masafumi ;
Toki, Seiichi ;
Endo, Masaki .
PLANT AND CELL PHYSIOLOGY, 2016, 57 (05) :1058-1068
[24]   The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit [J].
Murugan, Karthik ;
Babu, Kesavan ;
Sundaresan, Ramya ;
Rajan, Rakhi ;
Sashital, Dipali G. .
MOLECULAR CELL, 2017, 68 (01) :15-25
[25]   Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease [J].
Nekrasov, Vladimir ;
Staskawicz, Brian ;
Weigel, Detlef ;
Jones, Jonathan D. G. ;
Kamoun, Sophien .
NATURE BIOTECHNOLOGY, 2013, 31 (08) :691-693
[26]  
Newman M, 2016, CURR PROTOC MOL BIOL, V115, P1
[27]   Programmable RNA recognition and cleavage by CRISPR/Cas9 [J].
O'Connell, Mitchell R. ;
Oakes, Benjamin L. ;
Sternberg, Samuel H. ;
East-Seletsky, Alexandra ;
Kaplan, Matias ;
Doudna, Jennifer A. .
NATURE, 2014, 516 (7530) :263-+
[28]   Importance of heat shock proteins in maize [J].
Camila Pegoraro ;
Liliane Marcia Mertz ;
Luciano Carlos da Maia ;
Cesar Valmor Rombaldi ;
Antonio Costa de Oliveira .
Journal of Crop Science and Biotechnology, 2011, 14 (2) :85-95
[29]   Potential pitfalls of CRISPR/Cas9-mediated genome editing [J].
Peng, Rongxue ;
Lin, Guigao ;
Li, Jinming .
FEBS JOURNAL, 2016, 283 (07) :1218-1231
[30]  
Pennisi E, 2015, US RES CALL GREATER