Certain novel estimates within fractional calculus theory on time scales

被引:32
|
作者
Shen, Jian-Mei [1 ]
Rashid, Saima [2 ]
Noor, Muhammad Aslam [3 ]
Ashraf, Rehana [4 ]
Chu, Yu-Ming [5 ,6 ]
机构
[1] Hunan Univ, Sch Finance & Stat, Changsha 410079, Peoples R China
[2] Govt Coll Univ, Dept Math, Faisalabad 38000, Pakistan
[3] COMSATS Univ Islamabad, Dept Math, Islamabad 44000, Pakistan
[4] Lahore Coll Women Univ, Dept Math, Lahore 54660, Pakistan
[5] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[6] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Peoples R China
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 06期
关键词
Polya-Szego type inequality; Cebygev inequality; Riemann-Liouville fractional integral; time scale; INEQUALITIES;
D O I
10.3934/math.2020390
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The key purpose of this study is to suggest a delta Riemann-Liouville (RL) fractional integral operators for deriving certain novel refinements of Polya-Szego and Cebysev type inequalities on time scales. Some new Polya-Szego, Cebysev and extended Cebysev inequalities via delta-RL fractional integral operator on a time scale that captures some continuous and discrete analogues in the relative literature. New explicit bounds for unknown functions concerned are obtained due to the presented inequalities.
引用
收藏
页码:6073 / 6086
页数:14
相关论文
共 50 条
  • [31] Lower and upper estimates of solutions to systems of delay dynamic equations on time scales
    Diblik, Josef
    Vitovec, Jiri
    BOUNDARY VALUE PROBLEMS, 2013,
  • [32] Lower and upper estimates of solutions to systems of delay dynamic equations on time scales
    Josef Diblík
    Jiří Vítovec
    Boundary Value Problems, 2013
  • [33] Neutral functional sequential differential equations with Caputo fractional derivative on time scales
    Lazreg, Jamal Eddine
    Benkhettou, Nadia
    Benchohra, Mouffak
    Karapinar, Erdal
    FIXED POINT THEORY AND ALGORITHMS FOR SCIENCES AND ENGINEERING, 2022, 2022 (01):
  • [34] Hermite-Hadamard type inequalities in the setting of k-fractional calculus theory with applications
    Bin-Mohsen, Bandar
    Awan, Muhammad Uzair
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    AIMS MATHEMATICS, 2020, 5 (01): : 629 - 639
  • [35] THEORY OF RAPID VARIATION ON TIME SCALES WITH APPLICATIONS TO DYNAMIC EQUATIONS
    Vitovec, Jiri
    ARCHIVUM MATHEMATICUM, 2010, 46 (04): : 263 - 284
  • [36] New Fractional Dynamic Inequalities via Conformable Delta Derivative on Arbitrary Time Scales
    El-Deeb, Ahmed A.
    Ahmad, Hijaz
    Awrejcewicz, Jan
    SYMMETRY-BASEL, 2021, 13 (11):
  • [37] Existence and uniqueness of solutions for Ψ-Caputo fractional neutral sequential differential equations on time scales
    Chefnaj, Najat
    Hilal, Khalid
    Kajouni, Ahmed
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, : 5251 - 5268
  • [39] Novel dynamic Hardy-type inequalities on time scales
    El-Deeb, Ahmed A.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (05) : 5299 - 5313
  • [40] On Lyapunov inequality in stability theory for Hill's equation on time scales
    Atici, FM
    Guseinov, GS
    Kaymakcalan, B
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2000, 5 (06) : 603 - 620