Certain novel estimates within fractional calculus theory on time scales

被引:32
|
作者
Shen, Jian-Mei [1 ]
Rashid, Saima [2 ]
Noor, Muhammad Aslam [3 ]
Ashraf, Rehana [4 ]
Chu, Yu-Ming [5 ,6 ]
机构
[1] Hunan Univ, Sch Finance & Stat, Changsha 410079, Peoples R China
[2] Govt Coll Univ, Dept Math, Faisalabad 38000, Pakistan
[3] COMSATS Univ Islamabad, Dept Math, Islamabad 44000, Pakistan
[4] Lahore Coll Women Univ, Dept Math, Lahore 54660, Pakistan
[5] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[6] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Peoples R China
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 06期
关键词
Polya-Szego type inequality; Cebygev inequality; Riemann-Liouville fractional integral; time scale; INEQUALITIES;
D O I
10.3934/math.2020390
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The key purpose of this study is to suggest a delta Riemann-Liouville (RL) fractional integral operators for deriving certain novel refinements of Polya-Szego and Cebysev type inequalities on time scales. Some new Polya-Szego, Cebysev and extended Cebysev inequalities via delta-RL fractional integral operator on a time scale that captures some continuous and discrete analogues in the relative literature. New explicit bounds for unknown functions concerned are obtained due to the presented inequalities.
引用
收藏
页码:6073 / 6086
页数:14
相关论文
共 50 条