Symmetry classification of scalar Ito equations with multiplicative noise

被引:1
|
作者
Gaeta, Giuseppe [1 ,2 ]
Spadaro, Francesco [3 ]
机构
[1] Univ Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
[2] SMRI, I-00058 Santa Marinella, Italy
[3] EPFL SB MATHAA CSFT, Batiment MA Stn 8, CH-1015 Lausanne, Switzerland
关键词
Symmetry; Stochastic differential equations; Multiplicative noise; LIE-POINT SYMMETRIES;
D O I
10.1080/14029251.2020.1819615
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a symmetry classification of scalar stochastic equations with multiplicative noise. These equations can be integrated by means of the Kozlov procedure, by passing to symmetry adapted variables.
引用
收藏
页码:679 / 687
页数:9
相关论文
共 50 条
  • [41] A non-uniform discretization of stochastic heat equations with multiplicative noise on the unit sphere
    Kazashi, Yoshihito
    Le Gia, Quoc T.
    JOURNAL OF COMPLEXITY, 2019, 50 : 43 - 65
  • [42] The first exit problem of reaction-diffusion equations for small multiplicative Levy noise
    Anton Hogele, Michael
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2019, 16 (01): : 665 - 709
  • [43] Fast-Diffusion Limit for Reaction–Diffusion Equations with Degenerate Multiplicative and Additive Noise
    Wael W. Mohammed
    Journal of Dynamics and Differential Equations, 2021, 33 : 577 - 592
  • [44] Optical solitons for Biswas-Arshed equation with multiplicative noise via Ito calculus using three integration algorithms
    Zayed, Elsayed M. E.
    Shohib, Reham M. A.
    Alngar, Mohamed E. M.
    Gepreel, Khaled A.
    Nofal, Taher A.
    Yildirim, Yakup
    OPTIK, 2022, 258
  • [45] A noise estimation method for multiplicative noise removal
    Chen, Bao
    Tang, Yuchao
    Ding, Xiaohua
    COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (01)
  • [46] Mapping multiplicative to additive noise
    Rubin, Katy J.
    Pruessner, Gunnar
    Pavliotis, Grigorios A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (19)
  • [47] Chinese Remaindering with Multiplicative Noise
    Igor E. Shparlinski
    Ron Steinfeld
    Theory of Computing Systems, 2007, 40 : 33 - 41
  • [48] An Additive Approximation to Multiplicative Noise
    Nicholson, R.
    Kaipio, J. P.
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2020, 62 (09) : 1227 - 1237
  • [49] Symmetry group classification of ordinary differential equations: Survey of some results
    Mahomed, F. M.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2007, 30 (16) : 1995 - 2012
  • [50] IMAGE DENOISING IN MULTIPLICATIVE NOISE
    Seelamantula, Chandra Sekhar
    Blu, Thierry
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 1528 - 1532