ON THE NUMBER OF CRITICAL POINTS OF A POLYNOMIAL IN A DISC

被引:0
|
作者
Bakic, Rados [1 ]
机构
[1] Univ Belgrade, Teacher Training Fac, 43 Kraljice Natalije, Belgrade 11000, Serbia
来源
COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES | 2016年 / 69卷 / 10期
关键词
zeros of a polynomial; zeros of derivative; location of zeros;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Let p(z) be n-th degree polynomial and let z(1), ..., z(n-1) be its zeroes. We prove that at least [n-1/2] of its critical points lie in any circle C that is centred at the arithmetic mean of these zeroes and contains them.
引用
收藏
页码:1249 / 1250
页数:2
相关论文
共 50 条
  • [1] On the critical points of a polynomial
    Aziz, A
    Zargar, BA
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1998, 57 (01) : 173 - 174
  • [2] The number of limit cycles in perturbations of polynomial systems with multiple circles of critical points
    Xiong, Yanqin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 440 (01) : 220 - 239
  • [3] On the Location of Critical Points of a Polynomial
    Mohammad Ibrahim Mir
    Ishfaq Nazir
    Irfan Ahmad Wani
    Computational Methods and Function Theory, 2023, 23 : 125 - 132
  • [4] On the distribution of critical points of a polynomial
    Subramanian, Sneha Dey
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2012, 17 : 1 - 9
  • [5] On the Location of Critical Points of a Polynomial
    Mir, Mohammad Ibrahim
    Nazir, Ishfaq
    Wani, Irfan Ahmad
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2023, 23 (01) : 125 - 132
  • [6] SEPARATION OF THE CRITICAL POINTS OF A POLYNOMIAL
    Sendov, Blagovest
    Sendov, Hristo
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2017, 70 (05): : 607 - 610
  • [7] Fiber of a polynomial with isolated critical points
    Dutertre, N
    MANUSCRIPTA MATHEMATICA, 1999, 100 (04) : 437 - 454
  • [8] CONJECTURES ON THE CRITICAL-POINTS OF A POLYNOMIAL
    MARDEN, M
    AMERICAN MATHEMATICAL MONTHLY, 1983, 90 (04): : 267 - 276
  • [9] Majorization of the Critical Points of a Polynomial by Its Zeros
    Gerhard Schmeisser
    Computational Methods and Function Theory, 2004, 3 (1) : 95 - 103
  • [10] Polynomial bound for the number of rational points on curves.
    Remond, Gael
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2011, 23 (01): : 251 - 255