Wall slip and flow of concentrated hard-sphere colloidal suspensions

被引:103
|
作者
Ballesta, P. [1 ,2 ,3 ]
Petekidis, G. [3 ,4 ]
Isa, L. [1 ,2 ,5 ]
Poon, W. C. K. [1 ,2 ]
Besseling, R. [1 ,2 ]
机构
[1] Univ Edinburgh, SUPA, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland
[3] IESL FORTH, Iraklion 71110, Crete, Greece
[4] Univ Crete, Dept Mat Sci & Technol, Iraklion 71110, Crete, Greece
[5] Swiss Fed Inst Technol, Lab Surface Sci & Technol, Zurich, Switzerland
基金
英国工程与自然科学研究理事会;
关键词
YIELD-STRESS; MODEL HARD; SHEAR; RHEOLOGY; PARTICLES; DISPERSIONS; EMULSIONS; VELOCITY; PARALLEL; BEHAVIOR;
D O I
10.1122/1.4719775
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We present a comprehensive study of the slip and flow of concentrated colloidal suspensions using cone-plate rheometry and simultaneous confocal imaging. In the colloidal glass regime, for smooth, nonstick walls, the solid nature of the suspension causes a transition in the rheology from Herschel-Bulkley (HB) bulk flow behavior at large stress to a Bingham-like slip behavior at low stress, which is suppressed for sufficient colloid-wall attraction or colloid-scale wall roughness. Visualization shows how the slip-shear transition depends on gap size and the boundary conditions at both walls and that partial slip persist well above the yield stress. A phenomenological model, incorporating the Bingham slip law and HB bulk flow, fully accounts for the behavior. Microscopically, the Bingham law is related to a thin (subcolloidal) lubrication layer at the wall, giving rise to a characteristic dependence of slip parameters on particle size and concentration. We relate this to the suspension's osmotic pressure and yield stress and also analyze the influence of van der Waals interaction. For the largest concentrations, we observe nonuniform flow around the yield stress, in line with recent work on bulk shear banding of concentrated pastes. We also describe residual slip in concentrated liquid suspensions, where the vanishing yield stress causes coexistence of (weak) slip and bulk shear flow for all measured rates. (C) 2012 The Society of Rheology. [http://dx.doi.org/10.1122/1.4719775]
引用
收藏
页码:1005 / 1037
页数:33
相关论文
共 50 条
  • [31] High antisite defect concentrations in hard-sphere colloidal Laves phases
    van der Meer, Berend
    Smallenburg, Frank
    Dijkstra, Marjolein
    Filion, Laura
    SOFT MATTER, 2020, 16 (17) : 4155 - 4161
  • [32] Dielectric spectroscopy of concentrated colloidal suspensions
    Beltramo, Peter J.
    Roa, Rafael
    Carrique, Felix
    Furst, Eric M.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2013, 408 : 54 - 58
  • [33] Viscoelasticity and shear flow of concentrated, noncrystallizing colloidal suspensions: Comparison with mode-coupling theory
    Siebenbuerger, Miriam
    Fuchs, Matthias
    Winter, H. Henning
    Ballauff, Matthias
    JOURNAL OF RHEOLOGY, 2009, 53 (03) : 707 - 726
  • [34] Effective Hard-Sphere Repulsions between Oleate-Capped Colloidal Metal Oxide Nanocrystals
    Ofosu, Charles K.
    Kang, Jiho
    Truskett, Thomas M.
    Milliron, Delia J.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (48) : 11323 - 11329
  • [35] Models for the two-phase flow of concentrated suspensions
    Ahnert, Tobias
    Munch, Andreas
    Wagner, Barbara
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2019, 30 (03) : 585 - 617
  • [36] On the Gaussian approximation in colloidal hard sphere fluids
    Thorneywork, Alice L.
    Aarts, Dirk G. A. L.
    Horbach, Juergen
    Dullens, Roel P. A.
    SOFT MATTER, 2016, 12 (18) : 4129 - 4134
  • [37] The Importance of Oscillatory Structural Forces in the Sedimentation of a Binary Hard-Sphere Colloidal Suspension
    Vesaratchanon, Jan Sudaporn
    Nikolov, Alex
    Wasan, Darsh
    Henderson, Douglas
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (14) : 6641 - 6651
  • [38] Mechanical oscillation accelerating nucleation and nuclei growth in hard-sphere colloidal glass
    Nakamura, Nobutomo
    Nakashima, Shizuka
    Ogi, Hirotsugu
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [39] Creep and aging of hard-sphere glasses under constant stress
    Ballesta, P.
    Petekidis, G.
    PHYSICAL REVIEW E, 2016, 93 (04)
  • [40] Crystallization of Hard-Sphere Glasses
    Zaccarelli, E.
    Valeriani, C.
    Sanz, E.
    Poon, W. C. K.
    Cates, M. E.
    Pusey, P. N.
    PHYSICAL REVIEW LETTERS, 2009, 103 (13)