Wall slip and flow of concentrated hard-sphere colloidal suspensions

被引:103
作者
Ballesta, P. [1 ,2 ,3 ]
Petekidis, G. [3 ,4 ]
Isa, L. [1 ,2 ,5 ]
Poon, W. C. K. [1 ,2 ]
Besseling, R. [1 ,2 ]
机构
[1] Univ Edinburgh, SUPA, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland
[3] IESL FORTH, Iraklion 71110, Crete, Greece
[4] Univ Crete, Dept Mat Sci & Technol, Iraklion 71110, Crete, Greece
[5] Swiss Fed Inst Technol, Lab Surface Sci & Technol, Zurich, Switzerland
基金
英国工程与自然科学研究理事会;
关键词
YIELD-STRESS; MODEL HARD; SHEAR; RHEOLOGY; PARTICLES; DISPERSIONS; EMULSIONS; VELOCITY; PARALLEL; BEHAVIOR;
D O I
10.1122/1.4719775
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We present a comprehensive study of the slip and flow of concentrated colloidal suspensions using cone-plate rheometry and simultaneous confocal imaging. In the colloidal glass regime, for smooth, nonstick walls, the solid nature of the suspension causes a transition in the rheology from Herschel-Bulkley (HB) bulk flow behavior at large stress to a Bingham-like slip behavior at low stress, which is suppressed for sufficient colloid-wall attraction or colloid-scale wall roughness. Visualization shows how the slip-shear transition depends on gap size and the boundary conditions at both walls and that partial slip persist well above the yield stress. A phenomenological model, incorporating the Bingham slip law and HB bulk flow, fully accounts for the behavior. Microscopically, the Bingham law is related to a thin (subcolloidal) lubrication layer at the wall, giving rise to a characteristic dependence of slip parameters on particle size and concentration. We relate this to the suspension's osmotic pressure and yield stress and also analyze the influence of van der Waals interaction. For the largest concentrations, we observe nonuniform flow around the yield stress, in line with recent work on bulk shear banding of concentrated pastes. We also describe residual slip in concentrated liquid suspensions, where the vanishing yield stress causes coexistence of (weak) slip and bulk shear flow for all measured rates. (C) 2012 The Society of Rheology. [http://dx.doi.org/10.1122/1.4719775]
引用
收藏
页码:1005 / 1037
页数:33
相关论文
共 85 条
[41]   Direct comparison of the rheology of model hard and soft particle glasses [J].
Koumakis, N. ;
Pamvouxoglou, A. ;
Poulos, A. S. ;
Petekidis, G. .
SOFT MATTER, 2012, 8 (15) :4271-4284
[42]   A MECHANISM FOR NON-NEWTONIAN FLOW IN SUSPENSIONS OF RIGID SPHERES [J].
KRIEGER, IM ;
DOUGHERTY, TJ .
TRANSACTIONS OF THE SOCIETY OF RHEOLOGY, 1959, 3 :137-152
[43]  
Larson R. G., 1999, The structure and rheology of complex fluids
[44]  
Lee BurtrandInsung., 2005, CHEM PROCESSING CERA
[45]   Wall slip in polymer melts [J].
Leger, L ;
Hervet, H ;
Massey, G ;
Durliat, E .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (37) :7719-7740
[46]   Competition between Shear Banding and Wall Slip in Wormlike Micelles [J].
Lettinga, M. Paul ;
Manneville, Sebastien .
PHYSICAL REVIEW LETTERS, 2009, 103 (24)
[47]   Estimating the metal-ceramic van der Waals adhesion energy [J].
Lipkin, DM ;
Israelachvili, JN ;
Clarke, DR .
PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1997, 76 (04) :715-728
[48]   High-frequency ultrasonic speckle velocimetry in sheared complex fluids [J].
Manneville, S ;
Bécu, L ;
Colin, A .
EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2004, 28 (03) :361-373
[49]   Concentration dependence of the low-shear viscosity of suspensions of hard-sphere colloids [J].
Meeker, SP ;
Poon, WCK ;
Pusey, PN .
PHYSICAL REVIEW E, 1997, 55 (05) :5718-5722
[50]   Slip and flow in soft particle pastes [J].
Meeker, SP ;
Bonnecaze, RT ;
Cloitre, M .
PHYSICAL REVIEW LETTERS, 2004, 92 (19) :198302-1