Wall slip and flow of concentrated hard-sphere colloidal suspensions

被引:103
作者
Ballesta, P. [1 ,2 ,3 ]
Petekidis, G. [3 ,4 ]
Isa, L. [1 ,2 ,5 ]
Poon, W. C. K. [1 ,2 ]
Besseling, R. [1 ,2 ]
机构
[1] Univ Edinburgh, SUPA, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland
[3] IESL FORTH, Iraklion 71110, Crete, Greece
[4] Univ Crete, Dept Mat Sci & Technol, Iraklion 71110, Crete, Greece
[5] Swiss Fed Inst Technol, Lab Surface Sci & Technol, Zurich, Switzerland
基金
英国工程与自然科学研究理事会;
关键词
YIELD-STRESS; MODEL HARD; SHEAR; RHEOLOGY; PARTICLES; DISPERSIONS; EMULSIONS; VELOCITY; PARALLEL; BEHAVIOR;
D O I
10.1122/1.4719775
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We present a comprehensive study of the slip and flow of concentrated colloidal suspensions using cone-plate rheometry and simultaneous confocal imaging. In the colloidal glass regime, for smooth, nonstick walls, the solid nature of the suspension causes a transition in the rheology from Herschel-Bulkley (HB) bulk flow behavior at large stress to a Bingham-like slip behavior at low stress, which is suppressed for sufficient colloid-wall attraction or colloid-scale wall roughness. Visualization shows how the slip-shear transition depends on gap size and the boundary conditions at both walls and that partial slip persist well above the yield stress. A phenomenological model, incorporating the Bingham slip law and HB bulk flow, fully accounts for the behavior. Microscopically, the Bingham law is related to a thin (subcolloidal) lubrication layer at the wall, giving rise to a characteristic dependence of slip parameters on particle size and concentration. We relate this to the suspension's osmotic pressure and yield stress and also analyze the influence of van der Waals interaction. For the largest concentrations, we observe nonuniform flow around the yield stress, in line with recent work on bulk shear banding of concentrated pastes. We also describe residual slip in concentrated liquid suspensions, where the vanishing yield stress causes coexistence of (weak) slip and bulk shear flow for all measured rates. (C) 2012 The Society of Rheology. [http://dx.doi.org/10.1122/1.4719775]
引用
收藏
页码:1005 / 1037
页数:33
相关论文
共 85 条
[1]   EFFECTS OF TEMPERATURE AND SURFACE-ROUGHNESS ON TIME-DEPENDENT DEVELOPMENT OF WALL SLIP IN STEADY TORSIONAL FLOW OF CONCENTRATED SUSPENSIONS [J].
ARAL, BK ;
KALYON, DM .
JOURNAL OF RHEOLOGY, 1994, 38 (04) :957-972
[2]   Slip and Flow of Hard-Sphere Colloidal Glasses [J].
Ballesta, P. ;
Besseling, R. ;
Isa, L. ;
Petekidis, G. ;
Poon, W. C. K. .
PHYSICAL REVIEW LETTERS, 2008, 101 (25)
[4]   Large slip effect at a nonwetting fluid-solid interface [J].
Barrat, JL ;
Bocquet, L .
PHYSICAL REVIEW LETTERS, 1999, 82 (23) :4671-4674
[5]  
Barrett K.E. J., 1974, Dispersion polymerization in organic media
[6]   Spatiotemporal dynamics of wormlike micelles under shear -: art. no. 018301 [J].
Bécu, L ;
Manneville, S ;
Colin, A .
PHYSICAL REVIEW LETTERS, 2004, 93 (01) :018301-1
[7]   Evidence for three-dimensional unstable flows in shear-banding wormlike micelles [J].
Becu, Lydiane ;
Anache, Domitille ;
Manneville, Sebastien ;
Colin, Annie .
PHYSICAL REVIEW E, 2007, 76 (01)
[8]   Wall slip and yielding in pasty materials [J].
Bertola, V ;
Bertrand, F ;
Tabuteau, H ;
Bonn, D ;
Coussot, P .
JOURNAL OF RHEOLOGY, 2003, 47 (05) :1211-1226
[9]   Three-dimensional imaging of colloidal glasses under steady shear [J].
Besseling, R. ;
Weeks, Eric R. ;
Schofield, A. B. ;
Poon, W. C. K. .
PHYSICAL REVIEW LETTERS, 2007, 99 (02)
[10]   Shear Banding and Flow-Concentration Coupling in Colloidal Glasses [J].
Besseling, R. ;
Isa, L. ;
Ballesta, P. ;
Petekidis, G. ;
Cates, M. E. ;
Poon, W. C. K. .
PHYSICAL REVIEW LETTERS, 2010, 105 (26)