On the normalizer problem

被引:16
作者
Jespers, E
Juriaans, SO
de Miranda, JM
Rogerio, JR
机构
[1] Free Univ Brussels, Dept Math, B-1050 Brussels, Belgium
[2] Univ Sao Paulo, Dept Matemat, BR-05315970 Sao Paulo, Brazil
[3] Univ Fed Ceara, Dept Matemat, Fortaleza, Ceara, Brazil
关键词
group ring; unit; normalizer; automorphism;
D O I
10.1006/jabr.2001.8724
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper the normalizer problem of an integral group ring of an arbitrary group G is investigated. It is shown that any element of the normalizer N-u1(G) of G in the group of normalized units u(1)(ZG) is determined by a finite normal subgroup. This reduction to finite normal subgroups implies that the normalizer property holds for many classes of (infinite) groups, such as groups without non-trivial 2-torsion, torsion groups with a normal Sylow 2-subgroup, and locally nilpotent groups. Further it is shown that the commutator of N-u1(G) equals G' and N-u1(G)/G is finitely generated if the torsion subgroup of the finite conjugacy group of G is finite. (C) 2002 Elsevier Science.
引用
收藏
页码:24 / 36
页数:13
相关论文
共 20 条
[1]  
COLEMAN DB, 1964, P AM MATH SOC, V5, P511, DOI DOI 10.2307/2034735
[2]  
Gorenstein D., 2007, FINITE GROUPS
[3]  
HERTWECK M, COUNTER EXAMPLE ISOM
[4]  
HERTWECK M, 1998, THESIS U STUTTGART
[5]   GROUP AUTOMORPHISMS INDUCING THE IDENTITY MAP ON COHOMOLOGY [J].
JACKOWSKI, S ;
MARCINIAK, Z .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1987, 44 (1-3) :241-250
[6]   Isomorphisms of integral group rings of infinite groups [J].
Jespers, E ;
Juriaans, SO .
JOURNAL OF ALGEBRA, 2000, 223 (01) :171-189
[7]   Central units of integral group rings of nilpotent groups [J].
Jespers, E ;
Parmenter, MM ;
Sehgal, SK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (04) :1007-1012
[8]  
KIMMERLE W, 1999, ALGEBRA SOME RECENT, P89
[9]  
LI Y, 1999, NORMALIZER METABELIA
[10]   On the normalizer property for integral group rings [J].
Li, YL ;
Sehgal, SK ;
Parmenter, MM .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (09) :4217-4223