Spin-orbit coupling in graphene structures

被引:1
|
作者
Kochan, Denis [1 ]
Gmitra, Martin [1 ]
Fabian, Jaroslav [1 ]
机构
[1] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany
来源
SPINTRONICS V | 2012年 / 8461卷
关键词
Spin-orbit coupling; monolayer & bilayer graphene; BAND-STRUCTURE; GRAPHITE; SPINTRONICS;
D O I
10.1117/12.930947
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The electronic band structure of graphene monolayer and bilayer in the presence of spin-orbit coupling and transverse electric field is analyzed emphasizing the roles of three complementary approaches: first-principles calculations, symmetry arguments and tight-binding approximation. In the case of graphene monolayer, the intrinsic spin-orbit coupling opens a gap of 24 mu eV at the K(K')-point. The dominant physical mechanism governing the intrinsic spin-orbit interaction originates from d and higher carbon orbitals. The transverse electric field induces an additional extrinsic (Bychkov-Rashba-type) splitting of typical value 10 mu eV per V/nm. In the case of graphene bilayer; the intrinsic spin-orbit coupling splits the band structure near the K(K 0)-point by 24 mu eV. This splitting concerns the low-energy valence and conduction bands (two bands closest to the Fermi level). It is similar to graphene monolayer and is also attributed to d orbitals. An applied transverse electric field leaves the low-energy bands split by 24 mu eV independently of the applied field, this is the interesting and peculiar feature of the bilayer graphene. The electric field, instead, opens a semiconducting band gap separating these low-energy bands. The remaining two high-energy bands are directly at K(K 0)-point spin-split in proportion to the electric field; the proportionality coefficient is given by value 20 mu eV. Effective tight-binding and spin-orbit hamiltonians describing graphene mono-and bi-layer near K point are derived from symmetry principles.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Theory of spin-orbit coupling in bilayer graphene
    Konschuh, S.
    Gmitra, M.
    Kochan, D.
    Fabian, J.
    PHYSICAL REVIEW B, 2012, 85 (11):
  • [2] Spin-orbit coupling in fluorinated graphene
    Irmer, Susanne
    Frank, Tobias
    Putz, Sebastian
    Gmitra, Martin
    Kochan, Denis
    Fabian, Jaroslav
    PHYSICAL REVIEW B, 2015, 91 (11):
  • [3] Charge and spin transport in nanoscopic structures with spin-orbit coupling
    Reynoso, A.
    Usaj, Gonzalo
    Balseiro, C. A.
    PHYSICA B-CONDENSED MATTER, 2006, 384 (1-2) : 28 - 32
  • [4] Spin-orbit coupling in a graphene bilayer and in graphite
    Guinea, F.
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [5] Spin-orbit coupling in methyl functionalized graphene
    Zollner, Klaus
    Frank, Tobias
    Irmer, Susanne
    Gmitra, Martin
    Kochan, Denis
    Fabian, Jaroslav
    PHYSICAL REVIEW B, 2016, 93 (04):
  • [6] Rashba Spin-orbit Coupling Effects in Armchair Graphene Nanoribbons
    Prabhakar, S.
    Melnik, R.
    Sebetci, A.
    4TH INTERNATIONAL CONGRESS IN ADVANCES IN APPLIED PHYSICS AND MATERIALS SCIENCE (APMAS 2014), 2015, 1653
  • [7] Band structures of carbon nanotube with spin-orbit coupling interaction
    Liu, Hong
    PHYSICA B-CONDENSED MATTER, 2011, 406 (01) : 104 - 107
  • [8] Spin-orbit coupling assisted by flexural phonons in graphene
    Ochoa, H.
    Castro Neto, A. H.
    Fal'ko, V. I.
    Guinea, F.
    PHYSICAL REVIEW B, 2012, 86 (24):
  • [9] Enhanced spin-orbit coupling in dilute fluorinated graphene
    Avsar, Ahmet
    Lee, Jong Hak
    Koon, Gavin Kok Wai
    Oezyilmaz, Barbaros
    2D MATERIALS, 2015, 2 (04):
  • [10] Spin-orbit coupling in monolayer graphene doped by Cd and Te atoms
    Akhmatov, Zeitun
    CARBON, 2024, 230