Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway

被引:32
|
作者
Ishii, Jun [1 ]
Yoshimura, Kazuya [2 ]
Hasunuma, Tomohisa [1 ]
Kondo, Akihiko [2 ,3 ]
机构
[1] Kobe Univ, Org Adv Sci & Technol, Nada Ku, Kobe, Hyogo 6578501, Japan
[2] Kobe Univ, Grad Sch Engn, Dept Chem Sci & Engn, Nada Ku, Kobe, Hyogo 6578501, Japan
[3] RIKEN Biomass Engn Program, Yokohama, Kanagawa 2300045, Japan
关键词
Ethanol; Xylose fermentation; Furfural; 5-Hydroxymethylfurfural; Redox imbalance; Saccharomyces cerevisiae; NADP(+)-DEPENDENT XYLITOL DEHYDROGENASE; ANAEROBIC FERMENTATION; HYDROTHERMAL TREATMENT; ALCOHOL-DEHYDROGENASE; BIOETHANOL PRODUCTION; YEAST; STRAIN; HMF; IDENTIFICATION; TOLERANCE;
D O I
10.1007/s00253-012-4376-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Several alcohol dehydrogenase (ADH)-related genes have been identified as enzymes for reducing levels of toxic compounds, such as, furfural and/or 5-hydroxymethylfurfural (5-HMF), in hydrolysates of pretreated lignocelluloses. To date, overexpression of these ADH genes in yeast cells have aided ethanol production from glucose or glucose/xylose mixture in the presence of furfural or 5-HMF. However, the effects of these ADH isozymes on ethanol production from xylose as a sole carbon source remain uncertain. We showed that overexpression of mutant NADH-dependent ADH1 derived from TMB3000 strain in the recombinant Saccharomyces cerevisiae, into which xylose reductase (XR) and xylitol dehydrogenase (XDH) pathway of Pichia stipitis has been introduced, improved ethanol production from xylose as a sole carbon source in the presence of 5-HMF. Enhanced furan-reducing activity is able to regenerate NAD(+) to relieve redox imbalance, resulting in increased ethanol yield arising from decreased xylitol accumulation. In addition, we found that overexpression of wild-type ADH1 prevented the more severe inhibitory effects of furfural in xylose fermentation as well as overexpression of TMB3000-derived mutant. After 120 h of fermentation, the recombinant strains overexpressing wild-type and mutant ADH1 completely consumed 50 g/L xylose in the presence of 40 mM furfural and most efficiently produced ethanol (15.70 g/L and 15.24 g/L) when compared with any other test conditions. This is the first report describing the improvement of ethanol production from xylose as the sole carbon source in the presence of furan derivatives with xylose-utilizing recombinant yeast strains via the overexpression of ADH-related genes.
引用
收藏
页码:2597 / 2607
页数:11
相关论文
共 1 条