(3+1)-dimensional cylindrical Korteweg-de Vries equation for nonextensive dust acoustic waves: Symbolic computation and exact solutions

被引:16
|
作者
Guo, Shimin [2 ,3 ]
Wang, Hongli [1 ]
Mei, Liquan [2 ,4 ]
机构
[1] Tongji Univ, Sch Business & Adm, Shanghai 200092, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[3] Ctr Wiskunde & Informat, Res Grp MAC 2, NL-1098 XG Amsterdam, Netherlands
[4] Xi An Jiao Tong Univ, Ctr Computat Geosci, Xian 710049, Peoples R China
关键词
SOLITARY POTENTIALS; PLASMA; DISPERSION; SOLITONS;
D O I
10.1063/1.4729682
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
By combining the effects of bounded cylindrical geometry, azimuthal and axial perturbations, the nonlinear dust acoustic waves (DAWs) in an unmagnetized plasma consisting of negatively charged dust grains, nonextensive ions, and nonextensive electrons are studied in this paper. Using the reductive perturbation method, a (3 + 1)-dimensional variable-coefficient cylindrical Korteweg-de Vries (KdV) equation describing the nonlinear propagation of DAWs is derived. Via the homogeneous balance principle, improved F-expansion technique and symbolic computation, the exact traveling and solitary wave solutions of the KdV equation are presented in terms of Jacobi elliptic functions. Moreover, the effects of the plasma parameters on the solitary wave structures are discussed in detail. The obtained results could help in providing a good fit between theoretical analysis and real applications in space physics and future laboratory plasma experiments where long-range interactions are present. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729682]
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Analytical solutions and rogue waves in (3+1)-dimensional nonlinear Schrodinger equation
    Ma Zheng-Yi
    Ma Song-Hua
    CHINESE PHYSICS B, 2012, 21 (03)
  • [42] The dynamics of some exact solutions to a (3+1)-dimensional sine-Gordon equation
    Guo, Jiaming
    Li, Maohua
    WAVE MOTION, 2024, 130
  • [43] Bifurcations and exact solutions of a new (3+1)-dimensional Kadomtsev-Petviashvili equation
    Song, Yunjia
    Yang, Ben
    Wang, Zenggui
    PHYSICS LETTERS A, 2023, 461
  • [44] Exact solutions and localized excitations of (3+1)-dimensional Jimbo-Miwa equation
    Lei Jun
    Ma Song-Hua
    Fang Jian-Ping
    ACTA PHYSICA SINICA, 2011, 60 (12)
  • [45] Nonlinear Korteweg-de Vries-Burger equation for ion acoustic shock waves in a weakly relativistic electron-positron-ion plasma with thermal ions
    Saeed, R.
    Shah, Asif
    PHYSICS OF PLASMAS, 2010, 17 (03)
  • [46] VARIABLE-COEFFICIENT MIURA TRANSFORMATIONS AND INTEGRABLE PROPERTIES FOR A GENERALIZED VARIABLE-COEFFICIENT KORTEWEG-de VRIES EQUATION FROM BOSE-EINSTEIN CONDENSATES WITH SYMBOLIC COMPUTATION
    Li, Juan
    Tian, Bo
    Meng, Xiang-Hua
    Xu, Tao
    Zhang, Chun-Yi
    Zhang, Ya-Xing
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (04): : 571 - 584
  • [47] Painleve analysis, auto-Backlund transformation, and new exact solutions for Schamel and Schamel-Korteweg-de Vries-Burger equations in dust ion-acoustic waves plasma
    EL-Kalaawy, O. H.
    Aldenari, R. B.
    PHYSICS OF PLASMAS, 2014, 21 (09)
  • [48] Exact solutions of the (3+1)-dimensional generalized Boiti-Leon-Manna-Pempinelli equation
    Zhou, Ai-Juan
    Guo, Ya-Ru
    MODERN PHYSICS LETTERS B, 2022, 36 (05):
  • [49] NEW EXACT SOLUTIONS OF THE LOCAL FRACTIONAL (3+1)-DIMENSIONAL KADOMSTEV-PETVIASHVILI EQUATION
    Du, Chuan
    Wang, Kang-Jia
    Guo, Jin-Fei
    Bai, Yi-Chen
    THERMAL SCIENCE, 2024, 28 (4B): : 3473 - 3478
  • [50] Lax pairs and Bäcklund transformations for a new (3+1)-dimensional integrable equation utilizing symbolic computation
    Jhangeer, Adil
    Zahid, Asifa
    Amjad, Zeeshan
    Raza, Nauman
    Muhammad, Taseer
    AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (12)