(3+1)-dimensional cylindrical Korteweg-de Vries equation for nonextensive dust acoustic waves: Symbolic computation and exact solutions

被引:16
|
作者
Guo, Shimin [2 ,3 ]
Wang, Hongli [1 ]
Mei, Liquan [2 ,4 ]
机构
[1] Tongji Univ, Sch Business & Adm, Shanghai 200092, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[3] Ctr Wiskunde & Informat, Res Grp MAC 2, NL-1098 XG Amsterdam, Netherlands
[4] Xi An Jiao Tong Univ, Ctr Computat Geosci, Xian 710049, Peoples R China
关键词
SOLITARY POTENTIALS; PLASMA; DISPERSION; SOLITONS;
D O I
10.1063/1.4729682
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
By combining the effects of bounded cylindrical geometry, azimuthal and axial perturbations, the nonlinear dust acoustic waves (DAWs) in an unmagnetized plasma consisting of negatively charged dust grains, nonextensive ions, and nonextensive electrons are studied in this paper. Using the reductive perturbation method, a (3 + 1)-dimensional variable-coefficient cylindrical Korteweg-de Vries (KdV) equation describing the nonlinear propagation of DAWs is derived. Via the homogeneous balance principle, improved F-expansion technique and symbolic computation, the exact traveling and solitary wave solutions of the KdV equation are presented in terms of Jacobi elliptic functions. Moreover, the effects of the plasma parameters on the solitary wave structures are discussed in detail. The obtained results could help in providing a good fit between theoretical analysis and real applications in space physics and future laboratory plasma experiments where long-range interactions are present. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729682]
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Nonlinear Schamel Korteweg-De Vries-Burgers Equation to Report Ion-Acoustic Waves in the Relativistic Plasmas
    Hafez, Md Golam
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2019, 47 (12) : 5314 - 5323
  • [32] (3+1)-dimensional cylindrical dust ion-acoustic solitary waves in dusty plasma
    Rahman, T. F.
    Tarofder, S.
    Orani, M. M.
    Akter, J.
    Mamun, A. A.
    RESULTS IN PHYSICS, 2023, 53
  • [33] Dynamics investigation of (1+1)-dimensional time-fractional potential Korteweg-de Vries equation
    Akram, Ghazala
    Sadaf, Maasoomah
    Sarfraz, Maria
    Anum, Nageela
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (01) : 501 - 509
  • [34] Complex wave solutions and localized excitations of (2+1)-dimensional korteweg-de Vries system
    Zhang Wen-Ling
    Ma Song-Hua
    Chen Jing-Jing
    ACTA PHYSICA SINICA, 2014, 63 (08)
  • [35] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
    Yuan, Feng
    Ghanbari, Behzad
    CHINESE PHYSICS B, 2023, 32 (04)
  • [36] New coherent structures and interaction behavior for the new (2+1)-dimensional Korteweg-de Vries equation
    Li, Zitian
    CHAOS SOLITONS & FRACTALS, 2024, 184
  • [37] Analytical solutions to (modified) Korteweg-de Vries-Zakharov-Kuznetsov equation and modeling ion-acoustic solitary, periodic, and breather waves in auroral magnetoplasmas
    Alhejaili, Weaam
    Roy, Subrata
    Raut, Santanu
    Roy, Ashim
    Salas, Alvaro H.
    Aboelenen, Tarek
    El-Tantawy, S. A.
    PHYSICS OF PLASMAS, 2024, 31 (08)
  • [38] (3+1)-Dimensional Cylindrical Dust-Acoustic Solitary Waves in Four Component Nonthermal Dusty Plasma
    Alam, N.
    Mannan, A.
    Tarofder, S.
    Mamun, A. A.
    BRAZILIAN JOURNAL OF PHYSICS, 2025, 55 (02)
  • [39] Multi-soliton solutions of the forced variable-coefficient extended Korteweg-de Vries equation arisen in fluid dynamics of internal solitary waves
    Liu, Ying
    Gao, Yi-Tian
    Sun, Zhi-Yuan
    Yu, Xin
    NONLINEAR DYNAMICS, 2011, 66 (04) : 575 - 587
  • [40] Localized waves and interaction solutions to an extended (3+1)-dimensional Kadomtsev-Petviashvili equation
    Guo, Han-Dong
    Xia, Tie-Cheng
    Ma, Wen-Xiu
    MODERN PHYSICS LETTERS B, 2020, 34 (06):