(3+1)-dimensional cylindrical Korteweg-de Vries equation for nonextensive dust acoustic waves: Symbolic computation and exact solutions

被引:16
|
作者
Guo, Shimin [2 ,3 ]
Wang, Hongli [1 ]
Mei, Liquan [2 ,4 ]
机构
[1] Tongji Univ, Sch Business & Adm, Shanghai 200092, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[3] Ctr Wiskunde & Informat, Res Grp MAC 2, NL-1098 XG Amsterdam, Netherlands
[4] Xi An Jiao Tong Univ, Ctr Computat Geosci, Xian 710049, Peoples R China
关键词
SOLITARY POTENTIALS; PLASMA; DISPERSION; SOLITONS;
D O I
10.1063/1.4729682
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
By combining the effects of bounded cylindrical geometry, azimuthal and axial perturbations, the nonlinear dust acoustic waves (DAWs) in an unmagnetized plasma consisting of negatively charged dust grains, nonextensive ions, and nonextensive electrons are studied in this paper. Using the reductive perturbation method, a (3 + 1)-dimensional variable-coefficient cylindrical Korteweg-de Vries (KdV) equation describing the nonlinear propagation of DAWs is derived. Via the homogeneous balance principle, improved F-expansion technique and symbolic computation, the exact traveling and solitary wave solutions of the KdV equation are presented in terms of Jacobi elliptic functions. Moreover, the effects of the plasma parameters on the solitary wave structures are discussed in detail. The obtained results could help in providing a good fit between theoretical analysis and real applications in space physics and future laboratory plasma experiments where long-range interactions are present. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729682]
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Exact solution of the cylindrical Korteweg-de Vries equation for dust ion acoustic wave in unmagnetised plasma
    Ghosh, S. K.
    Gupta, S. K.
    Chatterjee, P.
    PHYSICA SCRIPTA, 2015, 90 (12)
  • [3] Cylindrical and Spherical Dust-Ion-Acoustic Shock Solitary Waves by Korteweg-de Vries-Burgers Equation
    Roy, Subrata
    Kairi, Rishi Raj
    Raut, Santanu
    BRAZILIAN JOURNAL OF PHYSICS, 2021, 51 (06) : 1651 - 1660
  • [4] Solitary Waves and Their Interactions in the Cylindrical Korteweg-De Vries Equation
    Hu, Wencheng
    Ren, Jingli
    Stepanyants, Yury
    SYMMETRY-BASEL, 2023, 15 (02):
  • [5] Exact solutions of the nonlocal (2+1)-dimensional complex modified Korteweg-de Vries Equation
    Wang, Yaru
    Ge, Yanyan
    Zhang, Yabin
    NONLINEAR DYNAMICS, 2024, : 8875 - 8889
  • [6] On the exact and numerical solutions to a new (2 + 1)-dimensional Korteweg-de Vries equation with conformable derivative
    Özkan Y.S.
    Yaşar E.
    Çelik N.
    Nonlinear Engineering, 2021, 10 (01) : 46 - 65
  • [7] Interactions of breathers and solitons of a generalized variable-coefficient Korteweg-de Vries-modified Korteweg-de Vries equation with symbolic computation
    Wang, Pan
    Tian, Bo
    Liu, Wen-Jun
    Jiang, Yan
    Xue, Yue-Shan
    EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (09)
  • [8] On constructing of multiple rogue wave solutions to the (3+1)-dimensional Korteweg-de Vries Benjamin-Bona-Mahony equation
    Cao, Yulei
    Tian, Hao
    Ghanbari, Behzad
    PHYSICA SCRIPTA, 2021, 96 (03)
  • [9] Korteweg-de Vries equation for ion acoustic soliton with negative ions in the presence of nonextensive electrons
    Shan, S. Ali
    Akhtar, N.
    ASTROPHYSICS AND SPACE SCIENCE, 2013, 346 (02) : 367 - 374
  • [10] Nonlinear dispersion relation of dust acoustic waves using the Korteweg-de Vries model
    Batool, Farida
    Mir, Ajaz
    Tiwari, Sanat
    Sen, Abhijit
    PHYSICS OF PLASMAS, 2024, 31 (03)