Fast-SAXS-pro: A unified approach to computing SAXS profiles of DNA, RNA, protein, and their complexes

被引:40
作者
Ravikumar, Krishnakumar M. [1 ]
Huang, Wei
Yang, Sichun
机构
[1] Case Western Reserve Univ, Ctr Prote, Cleveland, OH 44106 USA
关键词
ANGLE-X-RAY; SCATTERING DATA; BIOLOGICAL MACROMOLECULES; CRYSTAL-STRUCTURE; ION-BINDING; WEB SERVER; COMPUTATION; REFINEMENT; HYDRATION; WATER;
D O I
10.1063/1.4774148
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A generalized method, termed Fast-SAXS-pro, for computing small angle x-ray scattering (SAXS) profiles of proteins, nucleic acids, and their complexes is presented. First, effective coarse-grained structure factors of DNA nucleotides are derived using a simplified two-particle-per-nucleotide representation. Second, SAXS data of a 18-bp double-stranded DNA are measured and used for the calibration of the scattering contribution from excess electron density in the DNA solvation layer. Additional test on a 25-bp DNA duplex validates this SAXS computational method and suggests that DNA has a different contribution from its hydration surface to the total scattering compared to RNA and protein. To account for such a difference, a sigmoidal function is implemented for the treatment of non-uniform electron density across the surface of a protein/nucleic-acid complex. This treatment allows differential scattering from the solvation layer surrounding protein/nucleic-acid complexes. Finally, the applications of this Fast-SAXS-pro method are demonstrated for protein/DNA and protein/RNA complexes. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4774148]
引用
收藏
页数:7
相关论文
共 53 条
[1]   Water and ion binding around RNA and DNA (C,G) oligomers [J].
Auffinger, P ;
Westhof, E .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 300 (05) :1113-1131
[2]   Water and ion binding around r(UpA)12 and d(TpA)12 oligomers -: Comparison with RNA and DNA (CpG)12 duplexes [J].
Auffinger, P ;
Westhof, E .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 305 (05) :1057-1072
[3]   Structural characterization of flexible proteins using small-angle X-ray scattering [J].
Bernado, Pau ;
Mylonas, Efstratios ;
Petoukhov, Maxim V. ;
Blackledge, Martin ;
Svergun, Dmitri I. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (17) :5656-5664
[4]   STRUCTURAL BIOLOGY Proteins in dynamic equilibrium [J].
Bernado, Pau ;
Blackledge, Martin .
NATURE, 2010, 468 (7327) :1046-1048
[5]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) :535-542
[6]  
Bragg M. F., 1952, Proc. R. Soc. London, Ser. A, V213, P425
[7]   Simulation and modeling of nucleic acid structure, dynamics and interactions [J].
Cheatham, TE .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2004, 14 (03) :360-367
[8]   Molecular dynamics simulation of nucleic acids [J].
Cheatham, TE ;
Kollman, PA .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2000, 51 :435-471
[9]   Small-angle X-ray scattering of polymers [J].
Chu, B ;
Hsiao, BS .
CHEMICAL REVIEWS, 2001, 101 (06) :1727-1761
[10]   X-RAY SCATTERING FACTORS COMPUTED FROM NUMERICAL HARTREE-FOCK WAVE FUNCTIONS [J].
CROMER, DT ;
MANN, JB .
ACTA CRYSTALLOGRAPHICA SECTION A-CRYSTAL PHYSICS DIFFRACTION THEORETICAL AND GENERAL CRYSTALLOGRAPHY, 1968, A 24 :321-&