Analysis of genomic DNA methylation and gene expression in Chinese cabbage (Brassica rapa L. ssp pekinensis) after continuous seedling breeding

被引:1
|
作者
Tao, L. [1 ]
Wang, X. L. [3 ]
Guo, M. H. [1 ]
Zhang, Y. W. [1 ,2 ]
机构
[1] Northeast Agr Univ, Coll Hort, Harbin 150030, Peoples R China
[2] Minist Agr, Key Lab Biol & Genet Improvement Hort Crops North, Harbin 150030, Peoples R China
[3] Chengguan Middle Sch, Zhaotong 262600, Linqu County, Peoples R China
关键词
FLOWERING-LOCUS-C; ARABIDOPSIS; VERNALIZATION; PATTERNS; FAMILIES; GROWTH;
D O I
10.1134/S1022795415080116
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Vernalization plays a key role in the bolting and flowering of Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plants can switch from vegetative to reproductive growth and then bolt and flower under low temperature induction. The economic benefits of Chinese cabbage will decline significantly when the bolting happens before the vegetative body fully grows due to a lack of the edible value. It was found that continuous seedling breeding reduced the heading of Chinese cabbage and led to bolt and flower more easily. In the present study, two inbred lines, termed A161 and A105, were used as experiment materials. These two lines were subjected to vernalization and formed four types: seeds-seedling breeding once, seedling breeding twice, seedling breeding thrice and normal type. Differences in plant phenotype were compared. DNA methylation analysis was performed based on MSAP method. The differential fragments were cloned and analyzed by qPCR. Results showed that plants after seedling breeding thrice had a loosen heading leaves, elongated center axis and were easier to bolt and flower. It is suggested that continuous seedling breeding had a weaker winterness. It was observed that genome methylation level decreased with increasing generation. Four differential genes were identified, short for BraAPC1, BraEMP3, BraUBC26 and BraAL5. Fluorescent qPCR analysis showed that expression of four genes varied at different reproduction modes and different vernalization time. It is indicated that these genes might be involve in the development and regulation of bolting and flowering of plants. Herein, the molecular mechanism that continuous seedling breeding caused weaker winterness was analyzed preliminarily. It plays an important guiding significance for Chinese cabbage breeding.
引用
收藏
页码:774 / 782
页数:9
相关论文
共 50 条
  • [41] Transcriptomic, metabolomic, and physiological analysis of two varieties of Chinese cabbage (Brassica rapa L. ssp. pekinensis) that differ in their storabilit
    Zhao, Keyan
    Zhu, Xiaoqian
    Yuan, Shuzhi
    Xu, Xiangbin
    Shi, Junyan
    Zuo, Jinhua
    Yue, Xiaozhen
    Su, Tongbing
    Wang, Qing
    POSTHARVEST BIOLOGY AND TECHNOLOGY, 2024, 210
  • [42] Transcriptome Analysis Revealed Hub Genes Related to Tipburn Resistance in Chinese Cabbage (Brassica rapa L. ssp. pekinensis)
    Bi, Yaning
    Zhang, Wenjing
    Yuan, Yuxiang
    Feng, Jianqi
    Wang, Peiyun
    Ding, Cong
    Zhao, Yanyan
    Li, Lin
    Su, Henan
    Tian, Baoming
    Wei, Fang
    Wei, Xiaochun
    Zhang, Xiaowei
    PLANTS-BASEL, 2025, 14 (04):
  • [43] Genomic methylation and transcriptomic profiling provides insights into heading depression in inbred Brassica rapa L. ssp pekinensis
    Liu, Yan
    Xu, Cui
    Tang, Xuebing
    Pei, Surui
    Jin, Di
    Guo, Minghao
    Yang, Meng
    Zhang, Yaowei
    GENE, 2018, 665 : 119 - 126
  • [44] Behavior of DNA markers linked to a clubroot resistance gene in segregating populations of Chinese cabbage (Brassica rapa ssp pekinensis)
    Matsumoto, E
    Hayashida, N
    Sakamoto, K
    Ohi, M
    JOURNAL OF THE JAPANESE SOCIETY FOR HORTICULTURAL SCIENCE, 2005, 74 (05): : 367 - 373
  • [45] Fine mapping of BrWax1, a gene controlling cuticular wax biosynthesis in Chinese cabbage (Brassica rapa L. ssp pekinensis)
    Zhang, Xi
    Liu, Zhiyong
    Wang, Ping
    Wang, Qiushi
    Yang, Shuo
    Feng, Hui
    MOLECULAR BREEDING, 2013, 32 (04) : 867 - 874
  • [46] Fine mapping and identification of candidate Br-or gene controlling orange head of Chinese cabbage (Brassica rapa L. ssp pekinensis)
    Zhang, Junxiang
    Li, Huixia
    Zhang, Mingke
    Hui, Maixia
    Wang, Qi
    Li, Li
    Zhang, Lugang
    MOLECULAR BREEDING, 2013, 32 (04) : 799 - 805
  • [47] Genome-wide identification and expression analysis of calmodulin-like (CML) genes in Chinese cabbage (Brassica rapa L. ssp. pekinensis)
    Shanshan Nie
    Minjuan Zhang
    Lugang Zhang
    BMC Genomics, 18
  • [48] L-Cysteine Increases the Transformation Efficiency of Chinese Cabbage (Brassica rapa ssp. pekinensis)
    Sivanandhan, Ganeshan
    Moon, Jiae
    Sung, Chaemin
    Bae, Solhee
    Yang, Zhi Hong
    Jeong, So Young
    Choi, Su Ryun
    Kim, Sang-Gyu
    Lim, Yong Pyo
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [49] Transformation of Chinese Cabbage(Brassica rapa L. ssp. pekinensis)by Agrobacterium Micro-Injection into Flower Bud
    YAN Ji-yong
    State Key Laboratory of Plant Molecular Genetics
    Institute of VegetableCrops
    Agricultural Sciences in China, 2003, (08) : 86 - 91
  • [50] High-throughput sequencing discovery of conserved and novel microRNAs in Chinese cabbage (Brassica rapa L. ssp pekinensis)
    Wang, Fengde
    Li, Libin
    Liu, Lifeng
    Li, Huayin
    Zhang, Yihui
    Yao, Yingyin
    Ni, Zhongfu
    Gao, Jianwei
    MOLECULAR GENETICS AND GENOMICS, 2012, 287 (07) : 555 - 563