Correlation based dynamic time warping of multivariate time series

被引:127
|
作者
Banko, Zoltan [1 ]
Abonyi, Janos [1 ]
机构
[1] Univ Pannonia, Dept Proc Engn, H-8200 Veszprem, Hungary
关键词
Dynamic time warping; Principal component analysis; Multivariate time series; Segmentation; Similarity;
D O I
10.1016/j.eswa.2012.05.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, dynamic time warping (DTW) has begun to become the most widely used technique for comparison of time series data where extensive a priori knowledge is not available. However, it is often expected a multivariate comparison method to consider the correlation between the variables as this correlation carries the real information in many cases. Thus, principal component analysis (PCA) based similarity measures, such as PCA similarity factor (SPCA), are used in many industrial applications. In this paper, we present a novel algorithm called correlation based dynamic time warping (CBDTW) which combines DTW and PCA based similarity measures. To preserve correlation, multivariate time series are segmented and the local dissimilarity function of DTW originated from SPCA. The segments are obtained by bottom-up segmentation using special, PCA related costs. Our novel technique qualified on two databases, the database of signature verification competition 2004 and the commonly used AUSLAN dataset. We show that CBDTW outperforms the standard SPCA and the most commonly used, Euclidean distance based multivariate DTW in case of datasets with complex correlation structure. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:12814 / 12823
页数:10
相关论文
共 50 条
  • [21] Segmentation of Time Series in Improving Dynamic Time Warping
    Ma, Ruizhe
    Ahmadzadeh, Azim
    Boubrahimi, Soukaina Filali
    Angryk, Rafal A.
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 3756 - 3761
  • [22] Weighted dynamic time warping for time series classification
    Jeong, Young-Seon
    Jeong, Myong K.
    Omitaomu, Olufemi A.
    PATTERN RECOGNITION, 2011, 44 (09) : 2231 - 2240
  • [23] An OGS-based Dynamic Time Warping Algorithm for Time Series Data
    Zhou, Mi
    2013 INTERNATIONAL CONFERENCE ON ENGINEERING, MANAGEMENT SCIENCE AND INNOVATION (ICEMSI 2013), 2013,
  • [24] Multivariate Time Series Classification Using Dynamic Time Warping Template Selection for Human Activity Recognition
    Seto, Skyler
    Zhang, Wenyu
    Zhou, Yichen
    2015 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2015, : 1399 - 1406
  • [25] Dynamic Time Warping Based Adversarial Framework for Time-Series Domain
    Belkhouja, Taha
    Yan, Yan
    Doppa, Janardhan Rao
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (06) : 7353 - 7366
  • [26] Locally Slope-based Dynamic Time Warping for Time Series Classification
    Yuan, Jidong
    Lin, Qianhong
    Zhang, Wei
    Wang, Zhihai
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 1713 - 1722
  • [27] Trimmed fuzzy clustering of financial time series based on dynamic time warping
    D'Urso, Pierpaolo
    De Giovanni, Livia
    Massari, Riccardo
    ANNALS OF OPERATIONS RESEARCH, 2021, 299 (1-2) : 1379 - 1395
  • [28] Trimmed fuzzy clustering of financial time series based on dynamic time warping
    Pierpaolo D’Urso
    Livia De Giovanni
    Riccardo Massari
    Annals of Operations Research, 2021, 299 : 1379 - 1395
  • [29] Dynamic time warping-based imputation for univariate time series data
    Thi-Thu-Hong Phan
    Caillault, Emilie Poisson
    Lefebvre, Alain
    Bigand, Andre
    PATTERN RECOGNITION LETTERS, 2020, 139 : 139 - 147
  • [30] Time works well: Dynamic time warping based on time weighting for time series data mining
    Li, Hailin
    INFORMATION SCIENCES, 2021, 547 : 592 - 608