Fictitious domain finite element method for Stokes/elliptic interface problems with jump coefficients

被引:19
|
作者
Sun, Pengtao [1 ]
机构
[1] Univ Nevada Las Vegas, Dept Math Sci, 4505 Maryland Pkwy, Las Vegas, NV 89154 USA
基金
美国国家科学基金会;
关键词
Stokes/elliptic interface problem; Distributed Lagrange multiplier; Fictitious domain method; Mixed finite element; Well-posedness; Optimal error estimate; LAGRANGE MULTIPLIER/FICTITIOUS DOMAIN; DISCONTINUOUS COEFFICIENTS; NUMERICAL-SIMULATION; ELLIPTIC-EQUATIONS; FLUID; FLOW; FORMULATION; APPROXIMATIONS; MULTIPLIER;
D O I
10.1016/j.cam.2019.01.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the distributed Lagrange multiplier/fictitious domain (DLM/FD) finite element method is studied for a generic Stokes/elliptic interface problem with jump coefficients which belongs to a type of linearized stationary fluid-structure interaction problem. A mixed finite element discretization is developed for the proposed DLM/FD method for Stokes/elliptic interface problem and analyzed on the aspects of well-posedness, stability and optimal convergence. Numerical experiments are carried out and the theoretical error estimates of DLM/FD finite element method are validated. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:81 / 97
页数:17
相关论文
共 50 条
  • [41] Unfitted mixed finite element methods for elliptic interface problems
    Alshehri, Najwa
    Boffi, Daniele
    Gastaldi, Lucia
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2024, 40 (01)
  • [42] Analysis of the Fictitious Domain Method with an L2-Penalty for Elliptic Problems
    Saito, Norikazu
    Zhou, Guanyu
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2015, 36 (04) : 501 - 527
  • [43] Nonconforming immersed finite element spaces for elliptic interface problems
    Guo, Ruchi
    Lin, Tao
    Zhang, Xu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (06) : 2002 - 2016
  • [44] A local projection stabilization of fictitious domain method for elliptic boundary value problems
    Amdouni, S.
    Moakher, M.
    Renard, Y.
    APPLIED NUMERICAL MATHEMATICS, 2014, 76 : 60 - 75
  • [45] A sharp interface immersed edge-based smoothed finite element method with extended fictitious domain scheme
    Hong, Y.
    Wang, G.
    Huo, S. H.
    Jiang, C.
    Yu, C. J.
    PHYSICS OF FLUIDS, 2023, 35 (04)
  • [46] Application of the Fictitious Domain Method for Navier-Stokes Equations
    Temirbekov, Almas
    Zhaksylykova, Zhadra
    Malgazhdarov, Yerzhan
    Kasenov, Syrym
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (01): : 2035 - 2055
  • [47] Fictitious domain approach for numerical solution of elliptic problems
    Myslinski, A
    Zochowski, A
    CONTROL AND CYBERNETICS, 2000, 29 (01): : 305 - 323
  • [48] MIB Galerkin method for elliptic interface problems
    Xia, Kelin
    Zhan, Meng
    Wei, Guo-Wei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 272 : 195 - 220
  • [49] A Stabilized Finite Element Method for the Stokes-Stokes Coupling Interface Problem
    Shahid Hussain
    Md. Abdullah Al Mahbub
    Feng Shi
    Journal of Mathematical Fluid Mechanics, 2022, 24
  • [50] A LOCALLY MODIFIED PARAMETRIC FINITE ELEMENT METHOD FOR INTERFACE PROBLEMS
    Frei, Stefan
    Richter, Thomas
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (05) : 2315 - 2334