Fictitious domain finite element method for Stokes/elliptic interface problems with jump coefficients

被引:19
|
作者
Sun, Pengtao [1 ]
机构
[1] Univ Nevada Las Vegas, Dept Math Sci, 4505 Maryland Pkwy, Las Vegas, NV 89154 USA
基金
美国国家科学基金会;
关键词
Stokes/elliptic interface problem; Distributed Lagrange multiplier; Fictitious domain method; Mixed finite element; Well-posedness; Optimal error estimate; LAGRANGE MULTIPLIER/FICTITIOUS DOMAIN; DISCONTINUOUS COEFFICIENTS; NUMERICAL-SIMULATION; ELLIPTIC-EQUATIONS; FLUID; FLOW; FORMULATION; APPROXIMATIONS; MULTIPLIER;
D O I
10.1016/j.cam.2019.01.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the distributed Lagrange multiplier/fictitious domain (DLM/FD) finite element method is studied for a generic Stokes/elliptic interface problem with jump coefficients which belongs to a type of linearized stationary fluid-structure interaction problem. A mixed finite element discretization is developed for the proposed DLM/FD method for Stokes/elliptic interface problem and analyzed on the aspects of well-posedness, stability and optimal convergence. Numerical experiments are carried out and the theoretical error estimates of DLM/FD finite element method are validated. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:81 / 97
页数:17
相关论文
共 50 条
  • [41] A second order isoparametric finite element method for elliptic interface problems
    FANG Xu-fa
    HAN Dan-fu
    HU Xian-liang
    Applied Mathematics:A Journal of Chinese Universities(Series B), 2013, 28 (01) : 57 - 74
  • [42] A new weak Galerkin finite element method for elliptic interface problems
    Mu, Lin
    Wang, Junping
    Ye, Xiu
    Zhao, Shan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 325 : 157 - 173
  • [43] A MULTIGRID METHOD FOR UNFITTED FINITE ELEMENT DISCRETIZATIONS OF ELLIPTIC INTERFACE PROBLEMS
    Ludescher, Thomas
    Gross, Sven
    Reusken, Arnold
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (01): : A318 - A342
  • [44] A conforming discontinuous Galerkin finite element method for elliptic interface problems
    Wang, Yue
    Gao, Fuzheng
    Cui, Jintao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 412
  • [45] An iteratively adaptive multiscale finite element method for elliptic interface problems
    Hwang, Feng-Nan
    Su, Yi-Zhen
    Yao, Chien-Chou
    APPLIED NUMERICAL MATHEMATICS, 2018, 127 : 211 - 225
  • [46] Locally Conservative Immersed Finite Element Method for Elliptic Interface Problems
    Jo, Gwanghyun
    Kwak, Do Y.
    Lee, Young-Ju
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (02)
  • [47] A MODIFIED IMMERSED FINITE VOLUME ELEMENT METHOD FOR ELLIPTIC INTERFACE PROBLEMS
    Wang, Q.
    Zhang, Z.
    ANZIAM JOURNAL, 2020, 62 (01): : 42 - 61
  • [48] A stabilized immersed finite volume element method for elliptic interface problems
    Wang, Quanxiang
    Zhang, Zhiyue
    APPLIED NUMERICAL MATHEMATICS, 2019, 143 : 75 - 87
  • [49] A second order isoparametric finite element method for elliptic interface problems
    Xu-fa Fang
    Dan-fu Han
    Xian-liang Hu
    Applied Mathematics-A Journal of Chinese Universities, 2013, 28 : 57 - 74
  • [50] A second order isoparametric finite element method for elliptic interface problems
    FANG Xu-fa
    HAN Dan-fu
    HU Xian-liang
    Applied Mathematics:A Journal of Chinese Universities, 2013, (01) : 57 - 74