Fictitious domain finite element method for Stokes/elliptic interface problems with jump coefficients

被引:19
|
作者
Sun, Pengtao [1 ]
机构
[1] Univ Nevada Las Vegas, Dept Math Sci, 4505 Maryland Pkwy, Las Vegas, NV 89154 USA
基金
美国国家科学基金会;
关键词
Stokes/elliptic interface problem; Distributed Lagrange multiplier; Fictitious domain method; Mixed finite element; Well-posedness; Optimal error estimate; LAGRANGE MULTIPLIER/FICTITIOUS DOMAIN; DISCONTINUOUS COEFFICIENTS; NUMERICAL-SIMULATION; ELLIPTIC-EQUATIONS; FLUID; FLOW; FORMULATION; APPROXIMATIONS; MULTIPLIER;
D O I
10.1016/j.cam.2019.01.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the distributed Lagrange multiplier/fictitious domain (DLM/FD) finite element method is studied for a generic Stokes/elliptic interface problem with jump coefficients which belongs to a type of linearized stationary fluid-structure interaction problem. A mixed finite element discretization is developed for the proposed DLM/FD method for Stokes/elliptic interface problem and analyzed on the aspects of well-posedness, stability and optimal convergence. Numerical experiments are carried out and the theoretical error estimates of DLM/FD finite element method are validated. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:81 / 97
页数:17
相关论文
共 50 条
  • [31] PARTIALLY PENALIZED IMMERSED FINITE ELEMENT METHODS FOR ELLIPTIC INTERFACE PROBLEMS
    Lin, Tao
    Lin, Yanping
    Zhang, Xu
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (02) : 1121 - 1144
  • [32] A Stabilized Nitsche Fictitious Domain Method for the Stokes Problem
    Massing, Andre
    Larson, Mats G.
    Logg, Anders
    Rognes, Marie E.
    JOURNAL OF SCIENTIFIC COMPUTING, 2014, 61 (03) : 604 - 628
  • [33] THE IMMERSED FINITE VOLUME ELEMENT METHOD FOR SOME INTERFACE PROBLEMS WITH NONHOMOGENEOUS JUMP CONDITIONS
    Zhu, Ling
    Zhang, Zhiyue
    Li, Zhilin
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2016, 13 (03) : 368 - 382
  • [34] ADAPTIVE FINITE ELEMENT METHODS FOR ELLIPTIC PROBLEMS WITH DISCONTINUOUS COEFFICIENTS
    Bonito, Andrea
    Devore, Ronald A.
    Nochetto, Ricardo H.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (06) : 3106 - 3134
  • [35] Highly accurate finite element method for one-dimensional elliptic interface problems
    Loubenets, A.
    Ali, T.
    Hanke, M.
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (01) : 119 - 134
  • [36] A NEW MULTISCALE FINITE ELEMENT METHOD FOR HIGH-CONTRAST ELLIPTIC INTERFACE PROBLEMS
    Chu, C-C.
    Graham, I. G.
    Hou, T-Y.
    MATHEMATICS OF COMPUTATION, 2010, 79 (272) : 1915 - 1955
  • [37] HIGHER-ORDER FINITE ELEMENT METHODS FOR ELLIPTIC PROBLEMS WITH INTERFACES
    Guzman, Johnny
    Sanchez, Manuel A.
    Sarkis, Marcus
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (05): : 1561 - 1583
  • [38] A FINITE DIFFERENCE METHOD FOR ELLIPTIC PROBLEMS WITH IMPLICIT JUMP CONDITION
    Cao, Fujun
    Yuan, Dongfang
    Sheng, Zhiqiang
    Yuan, Guangwei
    He, Limin
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2022, 19 (04) : 439 - 457
  • [39] Numerical approximation of elliptic interface problems via isoparametric finite element methods
    Varsakelis, C.
    Marichal, Y.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (12) : 1945 - 1962
  • [40] High degree discontinuous Petrov-Galerkin immersed finite element methods using fictitious elements for elliptic interface problems
    Zhuang, Qiao
    Guo, Ruchi
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 362 : 560 - 573