Fictitious domain finite element method for Stokes/elliptic interface problems with jump coefficients

被引:19
|
作者
Sun, Pengtao [1 ]
机构
[1] Univ Nevada Las Vegas, Dept Math Sci, 4505 Maryland Pkwy, Las Vegas, NV 89154 USA
基金
美国国家科学基金会;
关键词
Stokes/elliptic interface problem; Distributed Lagrange multiplier; Fictitious domain method; Mixed finite element; Well-posedness; Optimal error estimate; LAGRANGE MULTIPLIER/FICTITIOUS DOMAIN; DISCONTINUOUS COEFFICIENTS; NUMERICAL-SIMULATION; ELLIPTIC-EQUATIONS; FLUID; FLOW; FORMULATION; APPROXIMATIONS; MULTIPLIER;
D O I
10.1016/j.cam.2019.01.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the distributed Lagrange multiplier/fictitious domain (DLM/FD) finite element method is studied for a generic Stokes/elliptic interface problem with jump coefficients which belongs to a type of linearized stationary fluid-structure interaction problem. A mixed finite element discretization is developed for the proposed DLM/FD method for Stokes/elliptic interface problem and analyzed on the aspects of well-posedness, stability and optimal convergence. Numerical experiments are carried out and the theoretical error estimates of DLM/FD finite element method are validated. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:81 / 97
页数:17
相关论文
共 50 条
  • [1] Distributed Lagrange multiplier/fictitious domain finite element method for Stokes/parabolic interface problems with jump coefficients
    Sun, Pengtao
    Wang, Cheng
    APPLIED NUMERICAL MATHEMATICS, 2020, 152 (152) : 199 - 220
  • [2] Distributed Lagrange Multiplier/Fictitious Domain Finite Element Method for a Transient Stokes Interface Problem with Jump Coefficients
    Lundberg, Andrew
    Sun, Pengtao
    Wang, Cheng
    Zhang, Chen-song
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2019, 119 (01): : 35 - 62
  • [3] DISTRIBUTED LAGRANGE MULTIPLIER-FICTITIOUS DOMAIN FINITE ELEMENT METHOD FOR STOKES INTERFACE PROBLEMS
    Lundberg, Andrew
    Sun, Pengtao
    Wang, Cheng
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2019, 16 (06) : 939 - 963
  • [4] An Interface-Unfitted Conforming Enriched Finite Element Method for Stokes-Elliptic Interface Problems with Jump Coefficients
    Wang, Hua
    Chen, Jinru
    Sun, Pengtao
    Lan, Rihui
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 27 (04) : 1174 - 1200
  • [5] On a fictitious domain method with distributed Lagrange multiplier for interface problems
    Auricchio, Ferdinando
    Boffi, Daniele
    Gastaldi, Lucia
    Lefieux, Adrien
    Reali, Alessandro
    APPLIED NUMERICAL MATHEMATICS, 2015, 95 : 36 - 50
  • [6] New immersed finite volume element method for elliptic interface problems with non-homogeneous jump conditions
    Wang, Quanxiang
    Zhang, Zhiyue
    Wang, Liqun
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 427
  • [7] A Partially Penalised Immersed Finite Element Method for Elliptic Interface Problems with Non-Homogeneous Jump Conditions
    Ji, Haifeng
    Zhang, Qian
    Wang, Qiuliang
    Xie, Yifan
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2018, 8 (01) : 1 - 23
  • [8] A MODIFIED IMMERSED FINITE VOLUME ELEMENT METHOD FOR ELLIPTIC INTERFACE PROBLEMS
    Wang, Q.
    Zhang, Z.
    ANZIAM JOURNAL, 2020, 62 (01) : 42 - 61
  • [9] A new weak Galerkin finite element method for elliptic interface problems
    Mu, Lin
    Wang, Junping
    Ye, Xiu
    Zhao, Shan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 325 : 157 - 173
  • [10] A Fictitious Domain Method with Distributed Lagrange Multiplier for Parabolic Problems With Moving Interfaces
    Wang, Cheng
    Sun, Pengtao
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 70 (02) : 686 - 716