BOUNDEDNESS OF GENERALIZED RIESZ POTENTIALS ON THE VARIABLE HARDY SPACES

被引:4
|
作者
Rocha, Pablo [1 ]
机构
[1] Univ Nacl Sur, CONICET, INMABB, RA-8000 Bahia Blanca, Buenos Aires, Argentina
关键词
variable Hardy spaces; fractional operators; EXPONENTS;
D O I
10.1017/S1446788717000131
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the boundedness from H-p(center dot)(R-n) into L-q(center dot)(R-n) of certain generalized Riesz potentials and the boundedness from H-p(center dot)(R-n) into H-q(center dot)(R-n) of the Riesz potential, both results are achieved via the finite atomic decomposition developed in Cruz-Uribe and Wang ['Variable Hardy spaces', Indiana University Mathematics Journal 63(2) (2014), 447-493].
引用
收藏
页码:255 / 273
页数:19
相关论文
共 50 条
  • [11] On the boundedness of generalized integration operators on Hardy spaces
    Chalmoukis, N.
    Nikolaidis, G.
    COLLECTANEA MATHEMATICA, 2024,
  • [12] Hardy–Littlewood–Sobolev Theorem for Variable Riesz Potentials
    Yoshihiro Mizuta
    Takao Ohno
    Tetsu Shimomura
    Results in Mathematics, 2023, 78
  • [13] The boundedness of generalized Bessel-Riesz operators on generalized Morrey spaces
    Idris, Mochammad
    Gunawan, Hendra
    ASIAN MATHEMATICAL CONFERENCE 2016 (AMC 2016), 2017, 893
  • [14] Riesz transform characterizations of variable Hardy–Lorentz spaces
    Lian Wu
    Dejian Zhou
    Ciqiang Zhuo
    Yong Jiao
    Revista Matemática Complutense, 2018, 31 : 747 - 780
  • [15] BOUNDEDNESS OF GENERALIZED HARDY OPERATORS ON WEIGHTED AMALGAM SPACES
    Aguilar Canestro, M. Isabel
    Ortega Salvador, Pedro
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2010, 13 (02): : 305 - 318
  • [16] BOUNDEDNESS OF THE GENERALIZED RIESZ POTENTIAL IN LOCAL MORREY TYPE SPACES
    Burenkov, V., I
    Senouci, M. A.
    EURASIAN MATHEMATICAL JOURNAL, 2021, 12 (04):
  • [17] Hardy–Sobolev Inequalities For Riesz Potentials Of Functions In Orlicz Spaces
    Y. Mizuta
    T. Shimomura
    Acta Mathematica Hungarica, 2023, 171 (2) : 221 - 240
  • [18] Hardy-Littlewood-Sobolev Theorem for Variable Riesz Potentials
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    RESULTS IN MATHEMATICS, 2023, 78 (03)
  • [19] Riesz potentials of Hardy-Hausdorff spaces and Q-type spaces
    Li, Pengtao
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (10) : 2017 - 2036
  • [20] Riesz potentials of Hardy-Hausdorff spaces and Q-type spaces
    Pengtao Li
    Science China(Mathematics), 2020, 63 (10) : 2017 - 2036