Exact partition function zeros of a polymer on a simple cubic lattice

被引:39
|
作者
Lee, Jae Hwan [1 ,2 ]
Kim, Seung-Yeon [3 ]
Lee, Julian [1 ,2 ]
机构
[1] Soongsil Univ, Sch Syst Biomed Sci, Seoul 156743, South Korea
[2] Soongsil Univ, Dept Bioinformat & Life Sci, Seoul 156743, South Korea
[3] Korea Natl Univ Transportat, Sch Liberal Arts & Sci, Chungju 380702, South Korea
来源
PHYSICAL REVIEW E | 2012年 / 86卷 / 01期
基金
新加坡国家研究基金会;
关键词
SELF-AVOIDING WALKS; MONTE-CARLO; COMPUTER-SIMULATION; PHASE-EQUILIBRIA; COIL TRANSITION; THETA; CHAIN; COLLAPSE; MODEL; VOLUME;
D O I
10.1103/PhysRevE.86.011802
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study conformational transitions of a polymer on a simple-cubic lattice by calculating the zeros of the exact partition function, up to chain length 24. In the complex temperature plane, two loci of the partition function zeros are found for longer chains, suggesting the existence of both the coil-globule collapse transition and the melting-freezing transition. The locus corresponding to coil-globule transition clearly approaches the real axis as the chain length increases, and the transition temperature could be estimated by finite-size scaling. The form of the logarithmic correction to the scaling of the partition function zeros could also be obtained. The other locus does not show clear scaling behavior, but a supplementary analysis of the specific heat reveals a first-order-like pseudotransition.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Exact partition function zeros and the collapse transition of a two-dimensional lattice polymer
    Lee, Jae Hwan
    Kim, Seung-Yeon
    Lee, Julian
    JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (11):
  • [2] Partition function zeros of the Q-state Potts model on the simple-cubic lattice
    Kim, SY
    NUCLEAR PHYSICS B, 2002, 637 (1-3) : 409 - 426
  • [3] Exact partition function zeros of two-dimensional lattice polymers
    Lee, J
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2004, 44 (03) : 617 - 620
  • [4] Parallel algorithm for calculation of the exact partition function of a lattice polymer
    Lee, Jae Hwan
    Kim, Seung-Yeon
    Lee, Julian
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (04) : 1027 - 1033
  • [5] Exact evaluation of the Green function for the anisotropic simple cubic lattice
    Delves, RT
    Joyce, GS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (08): : L59 - L65
  • [6] Exact evaluation of the simple cubic lattice Green function for a general lattice point
    Joyce, GS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (46): : 9811 - 9828
  • [7] ZEROS OF GRAND PARTITION FUNCTION FOR A LATTICE GAS
    HEILMANN, OJ
    JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (09) : 2701 - &
  • [8] Exact product forms for the simple cubic lattice Green function: I
    Joyce, GS
    Delves, RT
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (11): : 3645 - 3671
  • [9] Exact product forms for the simple cubic lattice Green function II
    Joyce, GS
    Delves, RT
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (20): : 5417 - 5447
  • [10] Exact product form for the anisotropic simple cubic lattice Green function
    Delves, R. T.
    Joyce, G. S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (16): : 4119 - 4145