Influence of Cation Ordering and Lattice Distortion on the Charge-Discharge Behavior of LiMn1.5Ni0.5O4 Spinel between 5.0 and 2.0 V

被引:195
作者
Lee, Eun-Sung [1 ,2 ]
Nam, Kyung-Wan [3 ]
Hu, Enyuan [3 ]
Manthiram, Arumugam [1 ,2 ]
机构
[1] Univ Texas Austin, Electrochem Energy Lab, Austin, TX 78712 USA
[2] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[3] Brookhaven Natl Lab, Upton, NY 11973 USA
关键词
lithium-ion batteries; spinel oxide cathodes; structural analysis; lattice distortion; STATE REDOX REACTIONS; HIGH-VOLTAGE; CATHODE MATERIALS; CRYSTAL-STRUCTURE; LITHIUM; NI; ELECTRODE; LINI0.5MN1.5O4-DELTA; ELECTROCHEMISTRY;
D O I
10.1021/cm3020836
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Four LiMn1.5Ni0.5O4 spinel cathodes with different degrees of transition-metal ion ordering have been synthesized by controlling the heat treatment condition. The effect of transition-metal ion ordering on the electrochemical and structural characteristics of LiMn1.5Ni0.5O4 during cycling between 5.0 and 2.0 V has been investigated by an analysis of the X-ray diffraction (XRD) and electrochemical data. Refinement of the XRD data confirms the difference between the size of the empty octahedral sites in the ordered and disordered spinel phases. Ex situ XRD analysis reveals the following: (i) the two distinct plateaus (at similar to 2.7 and similar to 2.1 V) involving the insertion of lithium ions into the 16c octahedral sites are linked to the evolution of two tetragonal phases (T1 and T2). The T2 phase originates from the additional lattice distortion due to the smaller size of the 16c octahedral sites in the disordered phase compared to that of the lithium ion; (ii) larger structural changes occur in the disordered samples during cycling at 5.0-2.0 V due to a larger lattice distortion; (iii) the T2 phase transforms slowly to the T1 phase during the rest period without any load; and (iv) lithium ions can reversibly insert into both 8a tetrahedral and 16c octahedral sites regardless of the transition-metal ion ordering. Comparison of the cyclability data with different voltage windows reveals that the volume and c/a ratio changes associated with the cubic to T1 and T2 phase transitions cause rapid capacity fade when LiMn1.5Ni0.5O4 is cycled between 5.0 and 2.0 V. These transformations restrict its use in the entire voltage range of 5.0-2.0 V despite its impressive theoretical capacity of similar to 294 mAh/g.
引用
收藏
页码:3610 / 3620
页数:11
相关论文
共 32 条
  • [1] Optimizing preparation conditions for 5 V electrode performance, and structural changes in Li1-xNi0.5Mn1.5O4 spinel
    Alcántara, R
    Jaraba, M
    Lavela, P
    Tirado, JL
    [J]. ELECTROCHIMICA ACTA, 2002, 47 (11) : 1829 - 1835
  • [2] Preparation and electrochemical investigation of LiMn2-xMexO4 (Me:Ni, Fe, and x=0.5, 1) cathode materials for secondary lithium batteries
    Amine, K
    Tukamoto, H
    Yasuda, H
    Fujita, Y
    [J]. JOURNAL OF POWER SOURCES, 1997, 68 (02) : 604 - 608
  • [3] A new three-volt spinel Li1+xMn1.5Ni0.5O4 for secondary lithium batteries
    Amine, K
    Tukamoto, H
    Yasuda, H
    Fujita, Y
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (05) : 1607 - 1613
  • [4] Topotactic two-phase reactions of Li[Ni1/2Mn3/2]O4 (P4332) in nonaqueous lithium cells
    Ariyoshi, K
    Iwakoshi, Y
    Nakayama, N
    Ohzuku, T
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (02) : A296 - A303
  • [5] Evaluation of crystallographic data with the program DIAMOND
    Bergerhoff, G
    Berndt, M
    Brandenburg, K
    [J]. JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 1996, 101 (03) : 221 - 225
  • [6] Oxygen deficiency as the origin of the disparate behavior of LiM0.5Mn1.5O4 (M = Ni, Cu) nanospinels in lithium cells
    Caballero, A
    Cruz, M
    Hernán, L
    Melero, M
    Morales, J
    Castellón, ER
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (03) : A552 - A559
  • [7] CATION DISTRIBUTION, CLUSTER STRUCTURE AND IONIC ORDERING OF THE SPINEL SERIES LINI0.5MN1.5-XTIXO4 AND LINI0.5-YMGYMN1.5O4
    GRYFFROY, D
    VANDENBERGHE, RE
    [J]. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1992, 53 (06) : 777 - 784
  • [8] Crystal structural change during charge-discharge process of LiMn1.5Ni0.5O4 as cathode material for 5 V class lithium secondary battery
    Idemoto, Y
    Sekine, H
    Ui, K
    Koura, N
    [J]. SOLID STATE IONICS, 2005, 176 (3-4) : 299 - 306
  • [9] Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures:: Fd(3)over-barm and P4332
    Kim, JH
    Myung, ST
    Yoon, CS
    Kang, SG
    Sun, YK
    [J]. CHEMISTRY OF MATERIALS, 2004, 16 (05) : 906 - 914
  • [10] Synthesis and characterization of nanostructured 4.7 VLixMn1.5Ni0.5O4 spinels for high-power lithium-ion batteries
    Kunduraci, M.
    Amatucci, G. G.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (07) : A1345 - A1352