On the theory of surfaces in the four-dimensional Euclidean space

被引:24
|
作者
Ganchev, Georgi [1 ]
Milousheva, Velichka [1 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
关键词
surfaces in the four-dimensional Euclidean space; Weingarten-type linear map; surfaces with flat normal connection; rotational surfaces;
D O I
10.2996/kmj/1214442794
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a two-dimensional surface M-2 in the four-dimensional Euclidean space E-4 we introduce an invariant linear map of Weingarten type in the tangent space of the surface, which generates two invariants k and x. The condition k = x = 0 characterizes the surfaces consisting of flat points. The minimal surfaces are characterized by the equality x(2) - k = 0. The class of the surfaces with flat normal connection is characterized by the condition x = 0. For the surfaces of general type we obtain a geometrically determined orthonormal frame field at each point and derive Frenet-type derivative formulas. We apply our theory to the class of the rotational surfaces in E-4, which prove to be surfaces with flat normal connection, and describe the rotational surfaces with constant invariants.
引用
收藏
页码:183 / 198
页数:16
相关论文
共 50 条
  • [41] A four-dimensional space for action perception?
    Vinton, Laura C.
    Tipper, Steven P.
    Barraclough, Nick E.
    I-PERCEPTION, 2021, 12 (04): : 5 - 5
  • [42] The Goursat problem in the four-dimensional space
    Zhegalov, VI
    Sevastyanov, VA
    DIFFERENTIAL EQUATIONS, 1996, 32 (10) : 1427 - 1428
  • [43] On one space of four-dimensional numbers
    Rakhymova, A. T.
    Gabbassov, M. B.
    Shapen, K. M.
    JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2020, 108 (04): : 81 - 98
  • [44] On the Cauchy problem in the four-dimensional space
    Mironov, AN
    DIFFERENTIAL EQUATIONS, 2004, 40 (06) : 903 - 907
  • [45] On the Cauchy Problem in the Four-Dimensional Space
    A. N. Mironov
    Differential Equations, 2004, 40 : 903 - 907
  • [46] Four-dimensional Electromagnetic Field Theory
    Tomilin, A. K.
    2017 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS), 2017, : 1414 - 1420
  • [47] On four dimensional Dupin hypersurfaces in Euclidean space
    Riveros, CMC
    Tenenblat, K
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2003, 75 (01): : 1 - 7
  • [48] Actions on the Four-Dimensional Pseudo-Euclidean Space R2,2 with a Three-Dimensional Orbit
    Ahmadi, P.
    Safari, S.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2022, 18 (03) : 303 - 331
  • [49] Renormalization scenario for the quantum Yang–Mills theory in four-dimensional space–time
    C. E. Derkachev
    A. V. Ivanov
    L. D. Faddeev
    Theoretical and Mathematical Physics, 2017, 192 : 1134 - 1140
  • [50] Cyclic and ruled Lagrangian surfaces in Euclidean four space
    Anciaux, Henri
    Romon, Pascal
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2009, 40 (03): : 341 - 369