Norm inequalities related to the matrix geometric mean

被引:42
|
作者
Bhatia, Rajendra [1 ]
Grover, Priyanka [1 ]
机构
[1] Indian Stat Inst, Delhi Ctr, New Delhi 110016, India
关键词
Matrix inequalities; Geometric mean; Binomial mean; Log Euclidean mean; Golden-Thompson inequality; Positive definite matrices;
D O I
10.1016/j.laa.2012.03.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Inequalities for norms of different versions of the geometric mean of two positive definite matrices are presented. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:726 / 733
页数:8
相关论文
共 50 条
  • [41] Geometric Mean for Subspace Selection
    Tao, Dacheng
    Li, Xuelong
    Wu, Xindong
    Maybank, Stephen J.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (02) : 260 - 274
  • [42] Consensus Driven by the Geometric Mean
    Mangesius, Herbert
    Xue, Dong
    Hirche, Sandra
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2018, 5 (01): : 251 - 261
  • [43] A brief study on the geometric mean
    Yeo, In-Kwon
    KOREAN JOURNAL OF APPLIED STATISTICS, 2020, 33 (04) : 357 - 364
  • [44] Geometric mean of bimetric spacetimes
    Kocic, Mikica
    CLASSICAL AND QUANTUM GRAVITY, 2021, 38 (07)
  • [45] ON MATRIX REARRANGEMENT INEQUALITIES
    Alaifari, Rima
    Cheng, Xiuyuan
    Pierce, Lillian B.
    Steinerberger, Stefan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (05) : 1835 - 1848
  • [46] GEOMETRIC MATRIX MIDRANGES
    Mostajeran, Cyrus
    Grussler, Christian
    Sepulchre, Rodolphe
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (03) : 1347 - 1368
  • [47] Harmonic mean and geometric mean of a non negative random variable
    Feng, Changyong
    Wang, Hongyue
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2025, 54 (06) : 1805 - 1812
  • [48] SOME INEQUALITIES FOR WEIGHTED POWER MEAN
    Ren, Yonghui
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (04): : 1281 - 1281
  • [49] On the weighted geometric mean of accretive matrices
    Yassine Bedrani
    Fuad Kittaneh
    Mohammed Sababheh
    Annals of Functional Analysis, 2021, 12
  • [50] A property of the geometric mean of accretive operators
    Lin, Minghua
    Sun, Fangfang
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (03) : 433 - 437