Norm inequalities related to the matrix geometric mean

被引:42
|
作者
Bhatia, Rajendra [1 ]
Grover, Priyanka [1 ]
机构
[1] Indian Stat Inst, Delhi Ctr, New Delhi 110016, India
关键词
Matrix inequalities; Geometric mean; Binomial mean; Log Euclidean mean; Golden-Thompson inequality; Positive definite matrices;
D O I
10.1016/j.laa.2012.03.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Inequalities for norms of different versions of the geometric mean of two positive definite matrices are presented. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:726 / 733
页数:8
相关论文
共 50 条
  • [1] On norm inequalities related to the geometric mean
    Freewan, Shaima'a
    Hayajneh, Mostafa
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 670 : 104 - 120
  • [2] INEQUALITIES RELATED TO THE GEOMETRIC MEAN OF ACCRETIVE MATRICES
    Liu, Juntong
    Mei, Jin-Jin
    Zhang, Dengpeng
    OPERATORS AND MATRICES, 2021, 15 (02): : 581 - 587
  • [3] Geometry and inequalities of geometric mean
    Trung Hoa Dinh
    Ahsani, Sima
    Tam, Tin-Yau
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2016, 66 (03) : 777 - 792
  • [4] Geometry and inequalities of geometric mean
    Trung Hoa Dinh
    Sima Ahsani
    Tin-Yau Tam
    Czechoslovak Mathematical Journal, 2016, 66 : 777 - 792
  • [5] GEOMETRIC MEAN AND NORM SCHWARZ INEQUALITY
    Ando, Tsuyoshi
    ANNALS OF FUNCTIONAL ANALYSIS, 2016, 7 (01) : 1 - 8
  • [6] GEOMETRIC VERSION OF MIXED MEAN INEQUALITIES
    Yuan Jun
    Li Aijun
    TAMKANG JOURNAL OF MATHEMATICS, 2009, 40 (02): : 129 - 137
  • [7] The Arithmetic Mean - Geometric Mean - Harmonic Mean: Inequalities and a Spectrum of Applications
    De, Prithwijit
    RESONANCE-JOURNAL OF SCIENCE EDUCATION, 2016, 21 (12): : 1119 - 1133
  • [8] Norm inequalities involving matrix monotone functions
    Singh, M
    Vasudeva, HL
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2004, 7 (04): : 621 - 627
  • [9] Inequalities and limits of weighted spectral geometric mean
    Gan, Luyining
    Tam, Tin-Yau
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (02) : 261 - 282
  • [10] Hiroshima's theorem and matrix norm inequalities
    Lin M.
    Wolkowicz H.
    Acta Scientiarum Mathematicarum, 2015, 81 (1-2): : 45 - 53