Large-scale Tikhonov regularization via reduction by orthogonal projection

被引:43
作者
Lampe, Joerg [1 ]
Reichel, Lothar [2 ]
Voss, Heinrich [1 ]
机构
[1] Hamburg Univ Technol, Inst Numer Simulat, D-21071 Hamburg, Germany
[2] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
关键词
Least squares; General-form Tikhonov regularization; Discrepancy principle; Ill-posedness; L-CURVE; ALGORITHM;
D O I
10.1016/j.laa.2011.07.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a new approach to computing an approximate solution of Tikhonov-regularized large-scale ill-posed least-squares problems with a general regularization matrix. The iterative method applies a sequence of projections onto generalized Krylov subspaces. A suitable value of the regularization parameter is determined by the discrepancy principle. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2845 / 2865
页数:21
相关论文
共 28 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]  
[Anonymous], 1974, Solving least squares problems
[3]  
[Anonymous], 1966, Soviet Mathematics Doklady
[4]  
BJORCK A, 1988, BIT, V28, P659, DOI 10.1007/BF01941141
[5]   Tikhonov regularization of large linear problems [J].
Calvetti, D ;
Reichel, L .
BIT NUMERICAL MATHEMATICS, 2003, 43 (02) :263-283
[6]  
Calvetti D, 2002, ELECTRON T NUMER ANA, V14, P20
[7]   Tikhonov regularization and the L-curve for large discrete ill-posed problems [J].
Calvetti, D ;
Morigi, S ;
Reichel, L ;
Sgallari, F .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 123 (1-2) :423-446
[8]   Estimation of the L-curve via Lanczos bidiagonalization [J].
Calvetti, D ;
Golub, GH ;
Reichel, L .
BIT NUMERICAL MATHEMATICS, 1999, 39 (04) :603-619
[9]  
Chung J, 2007, ELECTRON T NUMER ANA, V28, P149
[10]   REORTHOGONALIZATION AND STABLE ALGORITHMS FOR UPDATING GRAM-SCHMIDT QR FACTORIZATION [J].
DANIEL, JW ;
GRAGG, WB ;
KAUFMAN, L ;
STEWART, GW .
MATHEMATICS OF COMPUTATION, 1976, 30 (136) :772-795