Improvement of electro-mechanical properties of strain sensors made of elastic-conductive hybrid yarns

被引:52
|
作者
Guo, Li [1 ,2 ]
Berglin, Lena [1 ]
Mattila, Heikki [2 ]
机构
[1] Univ Boras, Swedish Sch Text, SE-50190 Boras, Sweden
[2] Tampere Univ Technol, FIN-33101 Tampere, Finland
关键词
smart textiles; knitted strain sensor; hybrid yarn; electro-mechanical; elasticity; conductive; MECHANICAL-PROPERTIES;
D O I
10.1177/0040517512452931
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
Fabric-based strain sensors have been developed using different technologies, among which flat knitting is one of the most effective and economical methods. However, knitted strain sensors are not often used in practical applications because the sensors usually exhibit large elastic hysteresis when they are deformed and subjected to stress during application. One possible approach to overcome these shortcomings is to introduce elastic properties at the yarn level by combining the conductive materials with elastic materials. In this paper, we demonstrate a hybrid yarn made of a conductive yarn that winds around an elastic core yarn in a direct twisting device. The electro-mechanical properties of strain sensors knitted from the hybrid yarns were tested in order to characterize the sensors. This study consisted of two stages: the yarn preparation and the sensor characterization. In the first stage, two kinds of elastic core components (polyamide/Lycra and polyamide) and two kinds of conductive winding yarns (Bekinox BK50/1 and Bekinox BK50/2) were selected for twisting. The twisting was done with a constant twisting speed and four different numbers of twists. Mechanical properties, that is, the tenacity, force at break and elongation at break, were tested in order to determine the optimal parameters for producing the hybrid yarns. The results indicated that among the tested yarns those with a polyamide core and Bekinox BK50/1 winding yarns at 450 twist/meter and with a polyamide/Lycra core and Bekinox BK 50/2 winding yarns at 600 twist/meter had the best properties. These were thus selected as the materials for producing knitted strain sensors. In the second stage, electro-mechanical properties of the knitted strain sensors were determined under tensile stress and multi-cyclic tensile stress. The results show that the hybrid yarns can effectively enhance the electro-mechanical properties of the knitted strain sensors without compromising processiablity and comfortability.
引用
收藏
页码:1937 / 1947
页数:11
相关论文
共 45 条
  • [41] Facile fabrication of biomimetic and conductive hydrogels with robust mechanical properties and 3D printability for wearable strain sensors in wireless human-machine interfaces
    Nezafati, Milad
    Salimiyan, Nahid
    Salighehdar, Sepehr
    Sedghi, Roya
    Dolatshahi-Pirouz, Alireza
    Mao, Yanchao
    CHEMICAL ENGINEERING JOURNAL, 2025, 509
  • [42] Starch-Based Ion-Conductive Organo-Hydrogels with Self-Healing, Anti-Freezing, and High Mechanical Properties toward Strain Sensors
    Huang, Bing
    Zhu, Lei
    Wei, Shicheng
    Li, Yuan
    Nie, Yongjia
    Zhao, Wenpeng
    MACROMOLECULAR RAPID COMMUNICATIONS, 2023, 44 (07)
  • [43] Molybdenum disulfide enhanced polyacrylamide-acrylic acid-Fe3+ ionic conductive hydrogel with high mechanical properties and anti-fatigue abilities as strain sensors
    Wang, Jing
    Liu, Yuxing
    Wang, Shuo
    Liu, Xinle
    Chen, Yipeng
    Qi, Peiyao
    Liu, Xiaofei
    Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610
  • [44] Molybdenum disulfide enhanced polyacrylamide-acrylic acid-Fe3+ ionic conductive hydrogel with high mechanical properties and anti-fatigue abilities as strain sensors
    Wang, Jing
    Liu, Yuxing
    Wang, Shuo
    Liu, Xinle
    Chen, Yipeng
    Qi, Peiyao
    Liu, Xiaofei
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2021, 610
  • [45] Ultra-fast preparation of multifunctional conductive hydrogels with high mechanical strength, self-healing and self-adhesive properties based on Tara Tannin-Fe3+ dynamic redox system for strain sensors applications
    Liu, Jiachang
    Bao, Song
    Ling, Qiangjun
    Fan, Xin
    Gu, Haibin
    POLYMER, 2022, 240