Low-cost LiFePO4 using Fe metal precursor

被引:21
作者
Kim, Donghan [1 ]
Lim, Jinsub [1 ]
Mathew, Vinod [1 ]
Koo, Bonil [2 ]
Paik, Younkee [3 ]
Ahn, Docheon [4 ]
Paek, Seung-Min [5 ]
Kim, Jaekook [1 ]
机构
[1] Chonnam Natl Univ, Dept Mat Sci & Engn, Kwangju 500757, South Korea
[2] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
[3] Korea Basic Sci Inst, Daegu Ctr, Taegu 702701, South Korea
[4] Pohang Accelerator Lab, Pohang 790784, South Korea
[5] Kyungpook Natl Univ, Dept Chem, Taegu 702701, South Korea
关键词
ELECTROCHEMICAL PROPERTIES; ELECTRODE MATERIALS; OLIVINE MATERIALS; NANOCRYSTALS; NANOPARTICLES; BATTERIES; RECONSTRUCTION; TEMPERATURE; CATHODES; LI-7;
D O I
10.1039/c2jm14499a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A nano-LiFePO4 possessing a plate-shaped morphology was synthesized by the solvothermal process using low-cost Fe metal powder as the starting precursor at a moderate temperature of around 230 degrees C under high pressure. Field-emission scanning electron microscopy (FE-SEM) images revealed the average thickness, length and width of the nanoplates to be 20, 100 and 100 nm respectively. The nanoplate-LiFePO4 delivered specific discharge capacities of 171 mA h g(-1) with impressive cycle performance until 150 cycles and high rate capabilities as capacities of 125 mA h g(-1) was achieved at elevated C-rates of 16 C. Field-emission transmission electron microscopy (FE-TEM) confirmed the growth of the nanoplates along the [010] and [101] crystallographic directions. Solid state 7 Li magic angle spinning nuclear magnetic resonance study suggests progressive Li-ion intercalation/deintercalation along a specific crystallographic direction and appears to support the domino-cascade model. Extended X-ray absorption fine structure spectroscopy (EXAFS) studies indicated a flexible LiFePO4 nanostructure due to the reconstruction of crystals' surface and thereby realize enhanced capacities. We believe that the strategy to adopt Fe-metal precursor in order to obtain such high performing nano-LiFePO4 is very promising for large-scale commercialization from a cost perspective.
引用
收藏
页码:2624 / 2631
页数:8
相关论文
共 33 条
[1]   Anisotropy of electronic and ionic transport in LiFePO4 single crystals [J].
Amin, Ruhul ;
Balaya, Palani ;
Maier, Joachim .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (01) :A13-A16
[2]  
Carvajal J.R., 1990, ABSTR SATELL MEET PO, P127
[3]   Electron microscopy study of the LiFePO4 to FePO4 phase transition [J].
Chen, GY ;
Song, XY ;
Richardson, TJ .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (06) :A295-A298
[4]   The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications [J].
Chen, Jiajun ;
Vacchio, Michael J. ;
Wang, Shijun ;
Chernova, Natalya ;
Zavalij, Peter Y. ;
Whittingham, M. Stanley .
SOLID STATE IONICS, 2008, 178 (31-32) :1676-1693
[5]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[6]   The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1 [J].
Delacourt, C ;
Poizot, P ;
Tarascon, JM ;
Masquelier, C .
NATURE MATERIALS, 2005, 4 (03) :254-260
[7]   Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model [J].
Delmas, C. ;
Maccario, M. ;
Croguennec, L. ;
Le Cras, F. ;
Weill, F. .
NATURE MATERIALS, 2008, 7 (08) :665-671
[8]   Doping semiconductor nanocrystals [J].
Erwin, SC ;
Zu, LJ ;
Haftel, MI ;
Efros, AL ;
Kennedy, TA ;
Norris, DJ .
NATURE, 2005, 436 (7047) :91-94
[9]  
Hearle P., 2005, NAT MATER, V3, P147
[10]   Approaching theoretical capacity of LiFePO4 at room temperature at high rates [J].
Huang, H ;
Yin, SC ;
Nazar, LF .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (10) :A170-A172