Akaike Information Criterion for Selecting Variables in the Nested Error Regression Model

被引:1
|
作者
Kubokawa, Tatsuya [1 ]
Srivastava, Muni S. [2 ]
机构
[1] Univ Tokyo, Fac Econ, Bunkyo Ku, Tokyo 1130033, Japan
[2] Univ Toronto, Dept Stat, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Akaike information criterion; Analysis of variance; Linear mixed model; Nested error regression model; Random effect; Selection of variables; Small area estimation;
D O I
10.1080/03610926.2011.555043
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Akaike Information Criterion (AIC) is developed for selecting the variables of the nested error regression model where an unobservable random effect is present. Using the idea of decomposing the likelihood into two parts of "within" and "between" analysis of variance, we derive the AIC when the number of groups is large and the ratio of the variances of the random effects and the random errors is an unknown parameter. The proposed AIC is compared, using simulation, with Mallows' C-p, Akaike's AIC, and Sugiura's exact AIC. Based on the rates of selecting the true model, it is shown that the proposed AIC performs better.
引用
收藏
页码:2626 / 2642
页数:17
相关论文
共 50 条
  • [41] An improved sparse identification of nonlinear dynamics with Akaike information criterion and group sparsity
    Dong, Xin
    Bai, Yu-Long
    Lu, Yani
    Fan, Manhong
    NONLINEAR DYNAMICS, 2023, 111 (02) : 1485 - 1510
  • [42] Akaike Information Criterion-based Objective for Belief Rule Base Optimization
    Change, Leilei
    Wang, Liuying
    Wang, Wei
    Liu, Gu
    Ling, Xiaodong
    2016 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC), VOL. 1, 2016, : 545 - 549
  • [43] Hyperspectral estimation of plant nitrogen content based on Akaike's information criterion
    Yang F.
    Dai H.
    Feng H.
    Yang G.
    Li Z.
    Chen Z.
    Feng, Haikuan (fenghaikuan123@163.com), 1600, Chinese Society of Agricultural Engineering (32): : 161 - 167
  • [44] Assessment of aero-engine service reliability based on Akaike information criterion
    Xie Jing
    Chen Qinggui
    Qin Haiqin
    Xie Zhenbo
    Cai Na
    2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 632 - 635
  • [45] An improved sparse identification of nonlinear dynamics with Akaike information criterion and group sparsity
    Xin Dong
    Yu-Long Bai
    Yani Lu
    Manhong Fan
    Nonlinear Dynamics, 2023, 111 : 1485 - 1510
  • [46] Using Akaike information criterion and minimum mean square error mode in compensating for ultrasonographic errors for estimation of fetal weight by new operators
    Cheng, Yueh-Chin
    Chiu, Yu Hsien
    Wang, Hsien-Chang
    Chang, Fong-Ming
    Chung, Kao-Chi
    Chang, Chiung-Hsin
    Cheng, Kuo-Sheng
    TAIWANESE JOURNAL OF OBSTETRICS & GYNECOLOGY, 2013, 52 (01): : 46 - 52
  • [47] Is model selection using Akaike's information criterion appropriate for catch per unit effort standardization in large samples?
    Shono, H
    FISHERIES SCIENCE, 2005, 71 (05) : 978 - 986
  • [48] HETEROSCEDASTIC NESTED ERROR REGRESSION MODELS WITH VARIANCE FUNCTIONS
    Sugasawa, Shonosuke
    Kubokawa, Tatsuya
    STATISTICA SINICA, 2017, 27 (03) : 1101 - 1123
  • [49] Is model selection using Akaike’s information criterion appropriate for catch per unit effort standardization in large samples?
    Hiroshi Shono
    Fisheries Science, 2005, 71 : 978 - 986
  • [50] Choosing the optimal fit function: Comparison of the Akaike information criterion and the F-test
    Glatting, Gerhard
    Kletting, Peter
    Reske, Sven N.
    Hohl, Kathrin
    Ring, Christina
    MEDICAL PHYSICS, 2007, 34 (11) : 4285 - 4292