Akaike Information Criterion for Selecting Variables in the Nested Error Regression Model

被引:1
|
作者
Kubokawa, Tatsuya [1 ]
Srivastava, Muni S. [2 ]
机构
[1] Univ Tokyo, Fac Econ, Bunkyo Ku, Tokyo 1130033, Japan
[2] Univ Toronto, Dept Stat, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Akaike information criterion; Analysis of variance; Linear mixed model; Nested error regression model; Random effect; Selection of variables; Small area estimation;
D O I
10.1080/03610926.2011.555043
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Akaike Information Criterion (AIC) is developed for selecting the variables of the nested error regression model where an unobservable random effect is present. Using the idea of decomposing the likelihood into two parts of "within" and "between" analysis of variance, we derive the AIC when the number of groups is large and the ratio of the variances of the random effects and the random errors is an unknown parameter. The proposed AIC is compared, using simulation, with Mallows' C-p, Akaike's AIC, and Sugiura's exact AIC. Based on the rates of selecting the true model, it is shown that the proposed AIC performs better.
引用
收藏
页码:2626 / 2642
页数:17
相关论文
共 50 条
  • [31] Bayesian estimators in uncertain nested error regression models
    Sugasawa, Shonosuke
    Kubokawa, Tatsuya
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 153 : 52 - 63
  • [32] Model selection for time-activity curves: The corrected Akaike information criterion and the F-test
    Kletting, Peter
    Glatting, Gerhard
    ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK, 2009, 19 (03): : 200 - 206
  • [33] Akaike information criterion to select well-fit resist models
    Burbine, Andrew
    Fryer, David
    Strurtevant, John
    DESIGN-PROCESS-TECHNOLOGY CO-OPTIMIZATION FOR MANUFACTURABILITY IX, 2015, 9427
  • [34] Uncertainty identification method using kriging surrogate model and Akaike information criterion for industrial electromagnetic device
    Kim, Saekyeol
    Lee, Soo-Gyung
    Kim, Ji-Min
    Lee, Tae Hee
    Lim, Myung-Seop
    IET SCIENCE MEASUREMENT & TECHNOLOGY, 2020, 14 (03) : 250 - 258
  • [35] Radio Frequency Transient Segment Detection Based on Akaike Information Criterion
    Ajouat, Saleh Abulgasem
    Tezel, Necmi Serkan
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2022, 25 (04): : 1681 - 1686
  • [36] Ground penetrating radar data processing using Akaike information criterion
    Jendo, Jacek
    2017 RADIOELECTRONIC SYSTEMS CONFERENCE, 2018, 10715
  • [37] Asymptotics for EBLUPs: Nested Error Regression Models
    Lyu, Ziyang
    Welsh, A. H.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (540) : 2028 - 2042
  • [38] Poverty mapping in small areas under a twofold nested error regression model
    Marhuenda, Yolanda
    Molina, Isabel
    Morales, Domingo
    Rao, J. N. K.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2017, 180 (04) : 1111 - 1136
  • [39] An Adaptive SSUKF Based on Akaike Information Criterion to Optimize the Distribution Entropy of the Innovation
    Chen, Guangwu
    Zhou, Xin
    Si, Yongbo
    IEEE SENSORS JOURNAL, 2025, 25 (04) : 6055 - 6066
  • [40] Order Estimation and Screening of Apneic Snore Sound Using the Akaike Information Criterion
    Inoue, Kunihiko
    Akutagawa, Masatake
    Emoto, Takahiro
    Abeyratne, Udantha
    Uemura, Tetsuya
    Nagashino, Hirofumi
    Kinouchi, Yohsuke
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2006, VOL 14, PTS 1-6, 2007, 14 : 1135 - +