Akaike Information Criterion for Selecting Variables in the Nested Error Regression Model

被引:1
|
作者
Kubokawa, Tatsuya [1 ]
Srivastava, Muni S. [2 ]
机构
[1] Univ Tokyo, Fac Econ, Bunkyo Ku, Tokyo 1130033, Japan
[2] Univ Toronto, Dept Stat, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Akaike information criterion; Analysis of variance; Linear mixed model; Nested error regression model; Random effect; Selection of variables; Small area estimation;
D O I
10.1080/03610926.2011.555043
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Akaike Information Criterion (AIC) is developed for selecting the variables of the nested error regression model where an unobservable random effect is present. Using the idea of decomposing the likelihood into two parts of "within" and "between" analysis of variance, we derive the AIC when the number of groups is large and the ratio of the variances of the random effects and the random errors is an unknown parameter. The proposed AIC is compared, using simulation, with Mallows' C-p, Akaike's AIC, and Sugiura's exact AIC. Based on the rates of selecting the true model, it is shown that the proposed AIC performs better.
引用
收藏
页码:2626 / 2642
页数:17
相关论文
共 50 条
  • [31] AKAIKE INFORMATION CRITERION (AIC) - INTRODUCTION
    TAKANE, Y
    BOZDOGAN, H
    PSYCHOMETRIKA, 1987, 52 (03) : 315 - 315
  • [32] A note on the unification of the Akaike information criterion
    Shi, PD
    Tsai, CL
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1998, 60 : 551 - 558
  • [33] Selecting Explanatory Variables with the Modified Version of the Bayesian Information Criterion
    Bogdan, Malgorzata
    Ghosh, Jayanta K.
    Zak-Szatkowska, Malgorzata
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2008, 24 (06) : 627 - 641
  • [34] Uninformative Parameters and Model Selection Using Akaike's Information Criterion
    Arnold, Todd W.
    JOURNAL OF WILDLIFE MANAGEMENT, 2010, 74 (06): : 1175 - 1178
  • [35] Model selection in dynamic contrast enhanced MRI: The Akaike Information Criterion
    Ingrisch, M.
    Sourbron, S.
    Reiser, M. F.
    Peller, M.
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 4: IMAGE PROCESSING, BIOSIGNAL PROCESSING, MODELLING AND SIMULATION, BIOMECHANICS, 2010, 25 : 356 - 358
  • [36] Semiparametric and additive model selection using an improved Akaike information criterion
    Simonoff, JS
    Tsai, CL
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1999, 8 (01) : 22 - 40
  • [37] An improved Akaike information criterion for state-space model selection
    Bengtsson, Thomas
    Cavanaugh, Joseph E.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (10) : 2635 - 2654
  • [38] The unbalanced nested error component regression model
    Baltagi, BH
    Song, SW
    Jung, BC
    JOURNAL OF ECONOMETRICS, 2001, 101 (02) : 357 - 381
  • [39] THE USE OF THE AKAIKE INFORMATION CRITERION IN THE IDENTIFICATION OF AN OPTIMUM FLOOD FREQUENCY MODEL
    MUTUA, FM
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 1994, 39 (03): : 235 - 244
  • [40] Akaike's Final Prediction Error Criterion Revisited
    Niedzwiecki, Maciej
    Ciolek, Marcin
    2017 40TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2017, : 237 - 242