Akaike Information Criterion for Selecting Variables in the Nested Error Regression Model

被引:1
|
作者
Kubokawa, Tatsuya [1 ]
Srivastava, Muni S. [2 ]
机构
[1] Univ Tokyo, Fac Econ, Bunkyo Ku, Tokyo 1130033, Japan
[2] Univ Toronto, Dept Stat, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Akaike information criterion; Analysis of variance; Linear mixed model; Nested error regression model; Random effect; Selection of variables; Small area estimation;
D O I
10.1080/03610926.2011.555043
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Akaike Information Criterion (AIC) is developed for selecting the variables of the nested error regression model where an unobservable random effect is present. Using the idea of decomposing the likelihood into two parts of "within" and "between" analysis of variance, we derive the AIC when the number of groups is large and the ratio of the variances of the random effects and the random errors is an unknown parameter. The proposed AIC is compared, using simulation, with Mallows' C-p, Akaike's AIC, and Sugiura's exact AIC. Based on the rates of selecting the true model, it is shown that the proposed AIC performs better.
引用
收藏
页码:2626 / 2642
页数:17
相关论文
共 50 条
  • [1] Prediction error criterion for selecting variables in a linear regression model
    Yasunori Fujikoshi
    Tamio Kan
    Shin Takahashi
    Tetsuro Sakurai
    Annals of the Institute of Statistical Mathematics, 2011, 63 : 387 - 403
  • [2] Prediction error criterion for selecting variables in a linear regression model
    Fujikoshi, Yasunori
    Kan, Tamio
    Takahashi, Shin
    Sakurai, Tetsuro
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2011, 63 (02) : 387 - 403
  • [3] Application of Akaike information criterion in selecting random error model for inertial measurement unit
    Zhu Y.
    Chang G.
    Yang M.
    Zhongguo Guanxing Jishu Xuebao/Journal of Chinese Inertial Technology, 2024, 32 (02): : 180 - 186
  • [4] The Akaike information criterion in weighted regression of immittance data
    Ingdal, Mats
    Johnsen, Roy
    Harrington, David A.
    ELECTROCHIMICA ACTA, 2019, 317 : 648 - 653
  • [5] Extending the akaike information criterion to mixture regression models
    Naik, Prasad A.
    Shi, Peide
    Tsai, Chih-Ling
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (477) : 244 - 254
  • [6] Conditional information criteria for selecting variables in linear mixed models
    Srivastava, Muni S.
    Kubokawa, Tatsuya
    JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (09) : 1970 - 1980
  • [7] A primer on model selection using the Akaike Information Criterion
    Portet, Stephanie
    INFECTIOUS DISEASE MODELLING, 2020, 5 : 111 - 128
  • [8] An Akaike-type information criterion for model selection under inequality constraints
    Kuiper, R. M.
    Hoijtink, H.
    Silvapulle, M. J.
    BIOMETRIKA, 2011, 98 (02) : 495 - 501
  • [9] Marker selection by Akaike information criterion and Bayesian information criterion
    Li, WT
    Nyholt, DR
    GENETIC EPIDEMIOLOGY, 2001, 21 : S272 - S277
  • [10] Conditional Akaike information criterion in the Fay-Herriot model
    Han, Bing
    STATISTICAL METHODOLOGY, 2013, 11 : 53 - 67