Free-standing electrospun carbon nanofibres-a high performance anode material for lithium-ion batteries

被引:44
|
作者
Kumar, P. Suresh [1 ]
Sahay, R. [1 ]
Aravindan, V. [2 ]
Sundaramurthy, J. [1 ]
Ling, Wong Chui [2 ]
Thavasi, V. [3 ]
Mhaisalkar, S. G. [1 ,2 ]
Madhavi, S. [1 ,2 ]
Ramakrishna, Seeram [3 ,4 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Energy Res Inst ERI N, Singapore 637553, Singapore
[3] Natl Univ Singapore, NUS Nanosci & Nanotechnol Initiat, Singapore 117576, Singapore
[4] Natl Univ Singapore, Ctr Nanofibers & Nanotechnol, Singapore 117576, Singapore
基金
新加坡国家研究基金会;
关键词
STORAGE; CHALLENGES; GRAPHENE; DEVICES;
D O I
10.1088/0022-3727/45/26/265302
中图分类号
O59 [应用物理学];
学科分类号
摘要
Free-standing carbon nanofibres (CNFs) are prepared by the carbonization of poly-acrylonitrile using a simple electro-spinning technique. The electro-spun fibres are studied as an anode material for lithium-ion batteries in half-cell configurations. The fibres showed an initial discharge capacity of 826 mAh g(-1) at a current density of 200 mA g(-1) and exhibited an appreciable capacity profile during cycling. The Li-storage mechanism has been explained based on the cyclic voltametric and galvanostatic cycling results.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Dual Carbonaceous Materials Synergetic Protection Silicon as a High-Performance Free-Standing Anode for Lithium-Ion Battery
    Li, Xing
    Bai, Yongshun
    Wang, Mingshan
    Wang, Guoliang
    Ma, Yan
    Huang, Yun
    Zheng, Jianming
    NANOMATERIALS, 2019, 9 (04):
  • [32] Nitrogen-doped carbon paper with 3D porous structure as a flexible free-standing anode for lithium-ion batteries
    Zhang, Hua
    Yang, Juntan
    Hou, Haoqing
    Chen, Shuiliang
    Yao, Haimin
    SCIENTIFIC REPORTS, 2017, 7
  • [33] Free-standing N-doped hollow carbon fibers as high-performance anode for potassium ion batteries
    Chen, Suhua
    Feng, Yanhong
    Wang, Jue
    Zhang, Erjin
    Yu, Xinzhi
    Lu, Bingan
    SCIENCE CHINA-MATERIALS, 2021, 64 (03) : 547 - 556
  • [34] Oriented wrinkle textures of free-standing graphene nanosheets: application as a high-performance lithium-ion battery anode
    Jeong, Hee-Sung
    Kim, Jongsoon
    Kyoung-Il Jo
    Kee, Jinho
    Choi, Jae-Hak
    Koo, Jaseung
    CARBON LETTERS, 2021, 31 (02) : 277 - 285
  • [35] Magnesium Sulphide as Anode Material for Lithium-Ion Batteries
    Helen, M.
    Fichtner, Maximilian
    ELECTROCHIMICA ACTA, 2015, 169 : 180 - 185
  • [36] Embedding amorphous lithium vanadate into carbon nanofibers by electrospinning as a high-performance anode material for lithium-ion batteries
    Liu, Ting
    Yao, Tianhao
    Li, Li
    Zhu, Lei
    Wang, Jinkai
    Li, Fang
    Wang, Hongkang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 580 : 21 - 29
  • [37] A free-standing LiFePO4-carbon paper hybrid cathode for flexible lithium-ion batteries
    Kretschmer, Katja
    Sun, Bing
    Xie, Xiuqiang
    Chen, Shuangqiang
    Wang, Guoxiu
    GREEN CHEMISTRY, 2016, 18 (09) : 2691 - 2698
  • [38] Flexible and Free-Standing Organic/Carbon Nanotubes Hybrid Films as Cathode for Rechargeable Lithium-Ion Batteries
    Lu, Yong
    Zhao, Qing
    Miao, Licheng
    Tao, Zhanliang
    Niu, Zhiqiang
    Chen, Jun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (27) : 14498 - 14506
  • [39] A High-Capacity Tellurium@Carbon Anode Material for Lithium-Ion Batteries
    Zhang, Juan
    Yin, Ya-Xia
    You, Ya
    Yan, Yang
    Guo, Yu-Guo
    ENERGY TECHNOLOGY, 2014, 2 (9-10) : 757 - 762
  • [40] MnO Nanoparticles Supported by Carbonized Cotton Fiber Foil as a Free-Standing Anode for High-Performance Lithium Ion Batteries
    Zheng, Zhong
    Cui, Dongming
    Pei, Yanyan
    Zhang, Fengxiao
    Yuan, Liangjie
    CHEMPLUSCHEM, 2019, 84 (02): : 166 - 174