Investigations and Experimental Study on Magnetic Resonant Coupling based Wireless Power Transfer System for Neighborhood EV's

被引:0
|
作者
Kavitha, Merugu [1 ]
Bobba, Phaneendra Babu [1 ]
Prasad, Dinkar [1 ]
机构
[1] Shiv Nadar Univ, Dept Elect Engn, Gautam Buddha Nagar, UP, India
来源
2016 IEEE 6TH INTERNATIONAL CONFERENCE ON POWER SYSTEMS (ICPS) | 2016年
关键词
wireless power transfer; compensation topologies; magnetic resonance technique; static charging; supercapacitor; PMBLDC motor;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Advancement in technology enhances the need for quick and efficient ways of charging electric devices. Increased need for portability has motivated us to make use of Wireless Power Transfer technology (WPT). In this paper, Magnetic Resonant Technique (MRT) based WPT system has been used to transfer the power wirelessly over larger airgaps. The conventional electric vehicles uses a battery as the main source and it suffers from large (1)charging time and also it requires huge amount of space for the charging station This paper illustrates various methods to implement WPT-MRT and supercapacitor based two-wheeler type electric vehicle (EV) to diminish the charging issues in the system. In this paper, 3-phase Permanent Magnet Brushless DC Motor (PMBLDC) is also used as a traction motor since it is energy efficient, has high torque per volume and greater ease of control compared to other motors. A TI controller is used as a central control unit to monitor the control variables of the system. This paper presents experimental interpretations of various compensation topologies and proves the supreme topology to achieve highest coupling coefficient to make maximum power transfer possible in the system. In this paper, the investigations and experimental study are further extended to provide a durable solution to facilitate fast / frequent charging for short commuting electric vehicles of the future.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Magnetic Resonant Coupling Based Wireless Power Transfer System with In-Band Communication
    Kim, Sun-Hee
    Lim, Yong-Seok
    Lee, Seung-Jun
    JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, 2013, 13 (06) : 562 - 568
  • [2] Study on Frequency Tracking for Wireless Power Transfer System Using Magnetic Resonant Coupling
    Liu, Shangjiang
    Shen, Yanxia
    Wu, Yuezheng
    Lin, Jingjing
    Hu, Mengyu
    PROCEEDINGS OF THE 2018 13TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2018), 2018, : 2569 - 2572
  • [3] Experimental Study of Effects of Coaxial Cables in Magnetic Resonant Wireless Power Transfer System
    Yu, Shixing
    Li, Long
    2013 IEEE INTERNATIONAL WIRELESS SYMPOSIUM (IWS), 2013,
  • [4] Study on Efficiency Maximization Design Principles for Wireless Power Transfer System Using Magnetic Resonant Coupling
    Li, Hongchang
    Yang, Xu
    Wang, Kangping
    Dong, Xiaoshuai
    2013 IEEE ECCE ASIA DOWNUNDER (ECCE ASIA), 2013, : 888 - 892
  • [5] Analysis of Medium Range Wireless Power Transfer System Using Magnetic Resonant Coupling
    Mukti, Rokeya Jahan
    Begum, Nur Payara
    Islam, Ariful
    2014 INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV), 2014,
  • [6] Wireless Power Transfer System via Magnetic Resonant Coupling at Fixed Resonance Frequency-Power Transfer System Based on Impedance Matching
    Beh, TeckChuan
    Kato, Masaki
    Imura, Takehiro
    Hori, Yoichi
    25TH WORLD BATTERY, HYBRID AND FUEL CELL ELECTRIC VEHICLE SYMPOSIUM AND EXHIBITION PROCEEDINGS, VOLS 1 & 2, 2010, : 1380 - 1386
  • [7] Wireless powering by magnetic resonant coupling: Recent trends in wireless power transfer system and its applications
    Das Barman, Surajit
    Reza, Ahmed Wasif
    Kumar, Narendra
    Karim, Md Ershadul
    Munir, Abu Bakar
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 51 : 1525 - 1552
  • [8] Resonant model analysis of wireless power transfer via magnetic resonant coupling
    Zhou H.-W.
    Sun L.-P.
    Wang S.
    Liu T.-S.
    Xie P.-H.
    Dianji yu Kongzhi Xuebao, 7 (65-73): : 65 - 73
  • [9] Wireless Power Transfer Based on Magnetic Coupling
    Wang Bin
    Wang Zezhong
    PROCEEDINGS OF THE 2015 4TH INTERNATIONAL CONFERENCE ON COMPUTER, MECHATRONICS, CONTROL AND ELECTRONIC ENGINEERING (ICCMCEE 2015), 2015, 37 : 441 - 446
  • [10] High Frequency Magnetic Resonant Coupling Wireless Power Transfer System for Middle Power Charging Applications
    Baek, Jeihoon
    Ahn, Chi-Hyung
    Jin, Myungsung
    Kwak, Sangshin
    2016 18TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS (EPE'16 ECCE EUROPE), 2016,