Thermoreflectance Measurement of Temperature and Thermal Resistance of Thin Film Gold

被引:14
作者
Cardenas, Christopher [1 ,2 ]
Fabris, Drazen [1 ,2 ]
Tokairin, Shawn [1 ,2 ]
Madriz, Francisco [2 ,3 ]
Yang, Cary Y. [2 ,3 ]
机构
[1] Santa Clara Univ, Dept Mech Engn, Santa Clara, CA 95053 USA
[2] Santa Clara Univ, Ctr Nanostruct, Santa Clara, CA 95053 USA
[3] Santa Clara Univ, Dept Elect Engn, Santa Clara, CA 95053 USA
来源
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME | 2012年 / 134卷 / 11期
关键词
thin film; thermoreflectance; conduction thermal transport; joule heating; thermal resistance; microscale; HEAT-TRANSFER; TRANSPORT; DEVICES;
D O I
10.1115/1.4007068
中图分类号
O414.1 [热力学];
学科分类号
摘要
To improve performance and reliability of integrated circuits, accurate knowledge of thermal transport properties must be possessed. In particular, reduced dimensions increase boundary scattering and the significance of thermal contact resistance. A thermoreflectance measurement can be used with a valid heat transport model to experimentally quantify the contact thermal resistance of thin film interconnects. In the current work, a quasi-steady state thermoreflectance measurement is used to determine the temperature distribution of a thin film gold interconnect (100 nm) undergoing Joule heating. By comparing the data to a heat transport model accounting for thermal diffusion, dissipation, and Joule heating, a measure of the thermal dissipation or overall thermal resistance of unit area is obtained. The gold film to substrate overall thermal resistance of unit area beneath the wide lead (10 mu m) and narrow line (1 mu m) of the interconnect are 1.64 x 10(-6) m(2) K/W and 5.94 x 10(-6) m(2) K/W, respectively. The thermal resistance of unit area measurements is comparable with published results based on a pump-probe thermoreflectance measurement. [DOI: 10.1115/1.4007068]
引用
收藏
页数:7
相关论文
共 35 条
[11]   Nanoscale heat transfer and nanostructured thermoelectrics [J].
Chen, Gang .
IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 2006, 29 (02) :238-246
[12]   Microscale and nanoscale thermal characterization techniques [J].
Christofferson, J. ;
Maize, K. ;
Ezzahri, Y. ;
Shabani, J. ;
Wang, X. ;
Shakouri, A. .
2007 INTERNATIONAL CONFERENCE ON THERMAL ISSUES IN EMERGINGTECHNOLOGIES - THEORY AND APPLICATIONS, 2007, :3-+
[13]   Calibration procedure for temperature measurements by thermoreflectance under high magnification conditions [J].
Dilhaire, S ;
Grauby, S ;
Claeys, W .
APPLIED PHYSICS LETTERS, 2004, 84 (05) :822-824
[14]  
Fabris D., 2012, 9 INT C HEAT TRANSF
[15]  
Fabris D., 2009, P 4 IEEE INT C NAN M, P829
[16]  
FABRIS D, 2008, P 2008 ASME SUMM HEA
[17]   CCD-based thermoreflectance microscopy: principles and applications [J].
Farzaneh, M. ;
Maize, K. ;
Luerssen, D. ;
Summers, J. A. ;
Mayer, P. M. ;
Raad, P. E. ;
Pipe, K. P. ;
Shakouri, A. ;
Ram, R. J. ;
Hudgings, Janice A. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (14)
[18]   HEAT-TRANSFER REGIMES IN MICROSTRUCTURES [J].
FLIK, MI ;
CHOI, BI ;
GOODSON, KE .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1992, 114 (03) :666-674
[19]   High resolution photothermal imaging of high frequency phenomena using a visible charge coupled device camera associated with a multichannel lock-in scheme [J].
Grauby, S ;
Forget, BC ;
Holé, S ;
Fournier, D .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1999, 70 (09) :3603-3608
[20]  
Jones W., 1985, THEORETICAL SOLID ST, V2