Exact solutions of the (2+1)-dimensional Camassa-Holm Kadomtsev-Petviashvili equation

被引:24
作者
Ebadi, Ghodrat [1 ]
Fard, Nazila Yousefzadeh [1 ]
Triki, Houria [2 ]
Biswas, Anjan [3 ]
机构
[1] Univ Tabriz, Fac Math Sci, Tabriz 5166614766, Iran
[2] Badji Mokhtar Univ, Dept Phys, Radiat Phys Lab, Anaba 2300, Algeria
[3] Delaware State Univ, Dept Math Sci, Dover, DE 19901 USA
来源
NONLINEAR ANALYSIS-MODELLING AND CONTROL | 2012年 / 17卷 / 03期
关键词
solitons; exp-function method; G '/G method; NUMERICAL-SOLUTIONS; EXPLICIT; WAVE;
D O I
10.15388/NA.17.3.14056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the (2 + 1)-dimensional Camassa-Holm Kadomtsev-Petviashvili equation. There are a few methods that will be utilized to carry out the integration of this equation. Those are the G'/G method as well as the exponential function method. Subsequently, the ansatz method will be applied to obtain the topological soliton solution of this equation. The constraint conditions, for the existence of solitons, will also fall out of these.
引用
收藏
页码:280 / 296
页数:17
相关论文
共 15 条
[1]   1-Soliton solution of the generalized Camassa-Holm Kadomtsev-Petviashvili equation [J].
Biswas, Anjan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (06) :2524-2527
[2]   Analytical and numerical solutions to the Davey-Stewartson equation with power-law nonlinearity [J].
Ebadi, Ghodrat ;
Krishnan, E. V. ;
Labidi, Manel ;
Zerrad, Essaid ;
Biswas, Anjan .
WAVES IN RANDOM AND COMPLEX MEDIA, 2011, 21 (04) :559-590
[3]   Application of the G′/G-expansion method for nonlinear diffusion equations with nonlinear source [J].
Ebadi, Ghodrat ;
Biswas, Anjan .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2010, 347 (07) :1391-1398
[4]   Analytical and numerical solutions of the Schrodinger-KdV equation [J].
Labidi, Manel ;
Ebadi, Ghodrat ;
Zerrad, Essaid ;
Biswas, Anjan .
PRAMANA-JOURNAL OF PHYSICS, 2012, 78 (01) :59-90
[5]   The compact and noncompact structures for two types of generalized Camassa-Holm-KP equations [J].
Lai, Shaoyong ;
Xu, Yang .
MATHEMATICAL AND COMPUTER MODELLING, 2008, 47 (11-12) :1089-1098
[6]   A simple method and its applications to nonlinear partial differential equations [J].
Pan, Chao-hong ;
Liu, Zheng-rong ;
Zhang, Ben-gong .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (08) :4197-4204
[7]   BRIGHT AND DARK SOLITONS OF AN INTEGRABLE EQUATION GOVERNING SHORT WAVES IN A LONG-WAVE MODEL WITH PERTURBATION TERMS [J].
Triki, Houria ;
Wazwaz, Abdul-Majid .
ACTA PHYSICA POLONICA B, 2011, 42 (08) :1743-1754
[8]   Two integrable extensions of the Kadomtsev-Petviashvili equation [J].
Wazwaz, Abdul-Majid .
CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2011, 9 (01) :49-56
[9]   The Camassa-Holm-KP equations with compact and noncompact travelling wave solutions [J].
Wazwaz, AM .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 170 (01) :347-360
[10]   Explicit and implicit solutions of a generalized Camassa-Holm Kadomtsev-Petviashvili equation [J].
Xie, Shaolong ;
Wang, Lin ;
Zhang, Yuzhong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (03) :1130-1141