Modification of two-level-atom resonance fluorescence near a plasmonic nanostructure

被引:45
作者
Vladimirova, Yulia V. [1 ,2 ]
Klimov, Vasily V. [3 ]
Pastukhov, Vladimir M. [1 ,2 ]
Zadkov, Victor N. [1 ,2 ]
机构
[1] Moscow MV Lomonosov State Univ, Ctr Int Laser, Moscow 119992, Russia
[2] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119992, Russia
[3] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 119991, Russia
来源
PHYSICAL REVIEW A | 2012年 / 85卷 / 05期
基金
俄罗斯基础研究基金会;
关键词
ENHANCED RAMAN-SCATTERING; SINGLE-MOLECULE FLUORESCENCE; SPONTANEOUS EMISSION; OPTICAL-PROPERTIES; NANOPARTICLES; ATOM; FREQUENCY; RADIATION; DEPENDENCE;
D O I
10.1103/PhysRevA.85.053408
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Modification of the resonance fluorescence spectrum of a two-level atom driven by a monochromatic field in the close proximity of a plasmonic nanostructure (metal sphere) is studied in detail. It is shown that one can control this spectrum by varying several key parameters: (i) the radius of the nanosphere, (ii) polarization of the incident radiation, and (iii) the atom's location around the nanosphere (its radial coordinate and polar angle in the spherical coordinate system). These parameters affect the local field enhancement and the modification of the radiative decay rate of the atom interacting with the nanosphere, which leads to modification of the resonance fluorescence spectrum of the atom (e.g., frequency shift of the satellite lines in the Mollow-type triplet, widths of the lines, and the spectrum intensity) by contrast with that in free space. The permittivity of the metal the nanosphere is made of is also an additional parameter, which defines the nonradiative decay. The latter in combination with other parameters allows continuous control of the transition from resonance fluorescence enhancement to its quenching.
引用
收藏
页数:8
相关论文
共 58 条
  • [1] Enhancement and quenching of single-molecule fluorescence
    Anger, P
    Bharadwaj, P
    Novotny, L
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (11)
  • [2] Biosensing with plasmonic nanosensors
    Anker, Jeffrey N.
    Hall, W. Paige
    Lyandres, Olga
    Shah, Nilam C.
    Zhao, Jing
    Van Duyne, Richard P.
    [J]. NATURE MATERIALS, 2008, 7 (06) : 442 - 453
  • [3] APANASEVICH PA, 1964, OPT SPEKTROSK+, V16, P709
  • [4] APANASEVICH PA, 1963, OPT SPEKTROSK+, V14, P612
  • [5] Resonance Fluorescence of a Single Artificial Atom
    Astafiev, O.
    Zagoskin, A. M.
    Abdumalikov, A. A., Jr.
    Pashkin, Yu. A.
    Yamamoto, T.
    Inomata, K.
    Nakamura, Y.
    Tsai, J. S.
    [J]. SCIENCE, 2010, 327 (5967) : 840 - 843
  • [6] Single molecule emission characteristics in near-field microscopy
    Bian, RX
    Dunn, RC
    Xie, XS
    Leung, PT
    [J]. PHYSICAL REVIEW LETTERS, 1995, 75 (26) : 4772 - 4775
  • [7] Measuring the quantum efficiency of the optical emission of single radiating dipoles using a scanning mirror
    Buchler, BC
    Kalkbrenner, T
    Hettich, C
    Sandoghdar, V
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (06)
  • [8] Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle
    Carminati, R
    Greffet, JJ
    Henkel, C
    Vigoureux, JM
    [J]. OPTICS COMMUNICATIONS, 2006, 261 (02) : 368 - 375
  • [9] Chance R., 1978, ADV CHEM PHYS, V37, P1, DOI DOI 10.1002/9780470142561.CH1
  • [10] A frequency domain existence proof of single-molecule surface-enhanced Raman Spectroscopy
    Dieringer, Jon A.
    Lettan, Robert B., II
    Scheidt, Karl A.
    Van Duyne, Richard P.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (51) : 16249 - 16256