Lippmann waveguide spectrometer with enhanced throughput and bandwidth for space and commercial applications

被引:13
作者
Madi, Mohammad [1 ,5 ]
Ceyssens, Frederik [2 ]
Shorubalko, Ivan [3 ]
Herzig, Hans Peter [4 ]
Guldimann, Benedikt [5 ]
Giaccari, Philippe [1 ]
机构
[1] Micos Engn GmbH, Uberlandstr 129, CH-8600 Dubendorf, Switzerland
[2] Univ Leuven, ESAT MICAS, Kasteelpk Arenberg 10, B-3001 Heverlee, Belgium
[3] Swiss Fed Labs Mat Sci & Technol Empa, Transport Nanoscale Interfaces, Uberlandstr 129, CH-8600 Dubendorf, Switzerland
[4] EPFL, Opt & Photon Technol Lab, CH-2000 Neuchatel, Switzerland
[5] ESA, European Space Res & Technol Ctr ESTEC, Postbus 299, NL-2200 AG Noordwijk, Netherlands
来源
OPTICS EXPRESS | 2018年 / 26卷 / 03期
关键词
SILICON OXYNITRIDE FILMS; OPTICAL-PROPERTIES; GOLD; INTERFEROMETER; SPECTROSCOPY; TI;
D O I
10.1364/OE.26.002682
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This article presents an innovative high spectral resolution waveguide spectrometer, from the concept to the prototype demonstration and the test results. The main goal is to build the smallest possible Fourier transform spectrometer (FTS) with state of the art technology. This waveguide FTS takes advantage of a customized pattern of nano-samplers fabricated on the surface of a planar waveguide that allows the increase of the measurement points necessary for increasing the spectral bandwidth of the FTS in a fully static way. The use of a planar waveguide on the other hand allows enhancing the throughput in a waveguide spectrometer compared to the conventional devices made of single-mode waveguides. A prototype is made in silicon oxynitride/silicon dioxide technology and characterized in the visible range. This waveguide spectrometer shows a nominal bandwidth of 256 nm at a central wavelength of 633 nm thanks to a custom pattern of nanodisks providing a 0.25 mu m sampling interval. The implementation of this innovative waveguide FTS for a real-case scenario is explored and further development of such device for the imaging FTS application is discussed. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:2682 / 2707
页数:26
相关论文
共 58 条
  • [1] [Anonymous], 1998, Handbook of Optical Constants of Solids
  • [2] [Anonymous], 2003, P 8 ANN S IEEE LEOS
  • [3] Atmospheric Chemistry Experiment (ACE):: Mission overview -: art. no. L15S01
    Bernath, PF
    McElroy, CT
    Abrams, MC
    Boone, CD
    Butler, M
    Camy-Peyret, C
    Carleer, M
    Clerbaux, C
    Coheur, PF
    Colin, R
    DeCola, P
    Bernath, PF
    McElroy, CT
    Abrams, MC
    Boone, CD
    Butler, M
    Camy-Peyret, C
    Carleer, M
    Clerbaux, C
    Coheur, PF
    Colin, R
    DeCola, P
    DeMazière, M
    Drummond, JR
    Dufour, D
    Evans, WFJ
    Fast, H
    Fussen, D
    Gilbert, K
    Jennings, DE
    Llewellyn, EJ
    Lowe, RP
    Mahieu, E
    McConnell, JC
    McHugh, M
    McLeod, SD
    Michaud, R
    Midwinter, C
    Nassar, R
    Nichitiu, F
    Nowlan, C
    Rinsland, CP
    Rochon, YJ
    Rowlands, N
    Semeniuk, K
    Simon, P
    Skelton, R
    Sloan, JJ
    Soucy, MA
    Strong, K
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (15)
  • [4] Bohrenx C. F., 1998, Absorption and Scattering of Light by Small Particles, P82, DOI [10.1002/9783527618156, DOI 10.1002/9783527618156]
  • [5] Bonneville C, 2014, LASER FOCUS WORLD, V50, P57
  • [6] SWIFTS: a groundbreaking integrated technology for high-performance spectroscopy and optical sensors
    Bonneville, Christophe
    Thomas, Fabrice
    Poirier, Mikhael de Mengin
    le Coarer, Etienne
    Benech, Pierre
    Gonthiez, Thierry
    Morand, Alain
    Coutant, Olivier
    Morino, Eric
    Puget, Renaud
    Martin, Bruno
    [J]. MOEMS AND MINIATURIZED SYSTEMS XII, 2013, 8616
  • [7] Bovensmann H., 2010, Carbon Monitoring Satellite (CarbonSat) Mission Overview
  • [8] Brown R., 1984, J. Mod. Opt, V31, P3
  • [9] Calvo M. L., 2007, OPTICAL WAVEGUIDES T, V5
  • [10] Cheben P., 2009, ADV OPT SCI C