Clustering Parameter Values for Differential Equation Models of Biological Pathways

被引:0
|
作者
Kahng, Dong-Soo [1 ]
Lee, Doheon [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Taejon 305701, South Korea
来源
OPTIMIZATION AND SYSTEMS BIOLOGY, PROCEEDINGS | 2008年 / 9卷
关键词
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Dynamics of many biological systems can be modeled in the form of nonlinear differential equations, where variables represent concentrations of participating molecular species, and parameters specify dynamics coefficients such as reaction rates and activity levels. It has been one of the hardest problems to determine right parameters even after we have acceptable model equations for a particular biological pathway. In this study, we propose a parameter space clustering method based on top-down refinement. The whole parameter space of a given model is explored by means of randomized comparison and top-down stepwise refinement. After the process, we come up with clusters of parameter values, each of which shows similar dynamics of a particular model. We expect that each of the clusters may be associated to a distinct phenotypical state of a given biological pathway. A simplified model of the well-known JAK-STAT pathway is used to illustrate the clustering process, and show the applicability of this technique.
引用
收藏
页码:265 / 270
页数:6
相关论文
共 50 条
  • [31] Parameter Estimation for Cell Cycle Ordinary Differential Equation (ODE) Models using a Grid Approach
    Alfieri, Roberta
    Mosca, Ettore
    Merelli, Ivan
    Milanesi, Luciano
    FROM GENES TO PERSONALIZED HEALTHCARE: GRID SOLUTIONS FOR THE LIFE SCIENCES, 2007, 126 : 93 - +
  • [32] Tailored parameter optimization methods for ordinary differential equation models with steady-state constraints
    Fiedler, Anna
    Raeth, Sebastian
    Theis, Fabian J.
    Hausser, Angelika
    Hasenauer, Jan
    BMC SYSTEMS BIOLOGY, 2016, 10
  • [33] Boosting Bayesian parameter inference of nonlinear stochastic differential equation models by Hamiltonian scale separation
    Albert, Carlo
    Ulzega, Simone
    Stoop, Ruedi
    PHYSICAL REVIEW E, 2016, 93 (04)
  • [34] Fides: Reliable trust-region optimization for parameter estimation of ordinary differential equation models
    Frohlich, Fabian
    Sorger, Peter
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (07)
  • [35] Efficient Methods for Parameter Estimation of Ordinary and Partial Differential Equation Models of Viral Hepatitis Kinetics
    Churkin, Alexander
    Lewkiewicz, Stephanie
    Reinharz, Vladimir
    Dahari, Harel
    Barash, Danny
    MATHEMATICS, 2020, 8 (09)
  • [36] A NONLINEAR DIFFERENTIAL EQUATION INVOLVING CHARACTERISTIC VALUES
    TANG, IC
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1967, 47 (07): : 473 - &
  • [37] PARAMETER ESTIMATION FOR UNCERTAIN DIFFERENTIAL EQUATION WITH JUMP
    Liu, Zhe
    Li, Yanbin
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2025,
  • [38] Parameter estimation in multifactor uncertain differential equation
    Zhang, Nan
    Sheng, Yuhong
    Zhang, Jing
    Wang, Xiaoli
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (02) : 2865 - 2878
  • [39] Certain differential equation systems depending on a parameter
    Fatou, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1928, 186 : 416 - 418
  • [40] Plant parameter values for models in temperate climates
    Breuer, L
    Eckhardt, K
    Frede, HG
    ECOLOGICAL MODELLING, 2003, 169 (2-3) : 237 - 293