Clustering Parameter Values for Differential Equation Models of Biological Pathways

被引:0
|
作者
Kahng, Dong-Soo [1 ]
Lee, Doheon [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Taejon 305701, South Korea
来源
OPTIMIZATION AND SYSTEMS BIOLOGY, PROCEEDINGS | 2008年 / 9卷
关键词
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Dynamics of many biological systems can be modeled in the form of nonlinear differential equations, where variables represent concentrations of participating molecular species, and parameters specify dynamics coefficients such as reaction rates and activity levels. It has been one of the hardest problems to determine right parameters even after we have acceptable model equations for a particular biological pathway. In this study, we propose a parameter space clustering method based on top-down refinement. The whole parameter space of a given model is explored by means of randomized comparison and top-down stepwise refinement. After the process, we come up with clusters of parameter values, each of which shows similar dynamics of a particular model. We expect that each of the clusters may be associated to a distinct phenotypical state of a given biological pathway. A simplified model of the well-known JAK-STAT pathway is used to illustrate the clustering process, and show the applicability of this technique.
引用
收藏
页码:265 / 270
页数:6
相关论文
共 50 条
  • [1] Optimal experiment selection for parameter estimation in biological differential equation models
    Mark K Transtrum
    Peng Qiu
    BMC Bioinformatics, 13
  • [2] Optimal experiment selection for parameter estimation in biological differential equation models
    Transtrum, Mark K.
    Qiu, Peng
    BMC BIOINFORMATICS, 2012, 13
  • [3] Parameter Estimation of Partial Differential Equation Models
    Xun, Xiaolei
    Cao, Jiguo
    Mallick, Bani
    Maity, Arnab
    Carroll, Raymond J.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (503) : 1009 - 1020
  • [4] Parameter Range Reduction in Ordinary Differential Equation Models
    Andrew Skelton
    Allan R. Willms
    Journal of Scientific Computing, 2015, 62 : 517 - 531
  • [5] Parameter estimation in differential equation models with constrained states
    Campbell, David A.
    Hooker, Giles
    McAuley, Kim B.
    JOURNAL OF CHEMOMETRICS, 2012, 26 (06) : 322 - 332
  • [6] Parameter estimates in differential equation models for chemical kinetics
    Winkel, Brian
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2011, 42 (01) : 37 - 51
  • [7] Parameter Range Reduction in Ordinary Differential Equation Models
    Skelton, Andrew
    Willms, Allan R.
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 62 (02) : 517 - 531
  • [8] Parameter estimation for semiparametric ordinary differential equation models
    Xue, Hongqi
    Kumar, Arun
    Wu, Hulin
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (24) : 5985 - 6004
  • [9] METHOD FOR PARAMETER SENSITIVITY ANALYSIS IN DIFFERENTIAL-EQUATION MODELS
    KOHBERGER, RC
    SCAVIA, D
    WILKINSON, JW
    WATER RESOURCES RESEARCH, 1978, 14 (01) : 25 - 29
  • [10] Consistent recursive parameter estimation of partial differential equation models
    Guo, L. Z.
    Billings, S. A.
    Coca, D.
    INTERNATIONAL JOURNAL OF CONTROL, 2009, 82 (10) : 1946 - 1954