The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation

被引:225
|
作者
Gao, Fashun [1 ]
Yang, Minbo [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
基金
中国国家自然科学基金;
关键词
Brezis-Nirenberg problem; Choquard equation; Hardy-Littlewood-Sobolev inequality; critical exponent; CRITICAL SOBOLEV EXPONENTS; GROUND-STATE SOLUTIONS; ELLIPTIC PROBLEMS; SCHRODINGER-EQUATION; EXISTENCE; MULTIPLICITY;
D O I
10.1007/s11425-016-9067-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish some existence results for the Brezis-Nirenberg type problem of the nonlinear Choquard equation -. u = ( O | u (y)| 2 | x - y | d y) | u | 2 2 u + u in O; where Omega is a bounded domain of R (N) with Lipschitz boundary, lambda is a real parameter, N 3, is the critical exponent in the sense of the Hardy-Littlewood-Sobolev inequality.
引用
收藏
页码:1219 / 1242
页数:24
相关论文
共 50 条
  • [31] A Brezis-Nirenberg type result for a nonlocal fractional operator
    Mawhin, Jean
    Bisci, Giovanni Molica
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 95 : 73 - 93
  • [32] ON QUASILINEAR BREZIS-NIRENBERG TYPE PROBLEMS WITH WEIGHTS
    Garcia-Huidobro, Marta
    Yarer, Cecilia S.
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2010, 15 (5-6) : 401 - 436
  • [33] LEAST ENERGY NODAL SOLUTIONS OF THE BREZIS-NIRENBERG PROBLEM IN DIMENSION N=5
    Roselli, Paolo
    Willem, Michel
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (01) : 59 - 69
  • [34] Remarks on a Brezis-Nirenberg's result☆
    Yue, Xiaorui
    Zou, Wenming
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 425 (02) : 900 - 910
  • [35] THE BREZIS-NIRENBERG PROBLEM FOR MIXED LOCAL AND NONLOCAL OPERATORS
    Biagi, Stefano
    BRUNO PINI MATHEMATICAL ANALYSIS SEMINAR, 2023, 14 (01) : 15 - 37
  • [36] A note on the log-perturbed Brezis-Nirenberg problem on the hyperbolic space
    Ghosh, Monideep
    Joseph, Anumol
    Karmakar, Debabrata
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 419 : 114 - 149
  • [37] The Brezis-Nirenberg problem for systems involving divergence-form operators
    Brown, Burton
    Gluck, Mathew
    Guingona, Vince
    Hammons, Thomas
    Parnes, Miriam
    Pooley, Sean
    Schweitzer, Avery
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 30 (06):
  • [38] INFINITELY MANY SIGN-CHANGING SOLUTIONS FOR THE BREZIS-NIRENBERG PROBLEM
    Sun, Jijiang
    Ma, Shiwang
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (06) : 2317 - 2330
  • [39] A Brezis-Nirenberg Type Problem for a Class of Degenerate Elliptic Problems Involving the Grushin Operator
    Alves, Claudianor O.
    Gandal, Somnath
    Loiudice, Annunziata
    Tyagi, Jagmohan
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (02)
  • [40] Sign-changing tower of bubbles for the Brezis-Nirenberg problem
    Iacopetti, Alessandro
    Vaira, Giusi
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (01)