The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation

被引:231
作者
Gao, Fashun [1 ]
Yang, Minbo [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
基金
中国国家自然科学基金;
关键词
Brezis-Nirenberg problem; Choquard equation; Hardy-Littlewood-Sobolev inequality; critical exponent; CRITICAL SOBOLEV EXPONENTS; GROUND-STATE SOLUTIONS; ELLIPTIC PROBLEMS; SCHRODINGER-EQUATION; EXISTENCE; MULTIPLICITY;
D O I
10.1007/s11425-016-9067-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish some existence results for the Brezis-Nirenberg type problem of the nonlinear Choquard equation -. u = ( O | u (y)| 2 | x - y | d y) | u | 2 2 u + u in O; where Omega is a bounded domain of R (N) with Lipschitz boundary, lambda is a real parameter, N 3, is the critical exponent in the sense of the Hardy-Littlewood-Sobolev inequality.
引用
收藏
页码:1219 / 1242
页数:24
相关论文
共 39 条
[1]   On a periodic Schrodinger equation with nonlocal superlinear part [J].
Ackermann, N .
MATHEMATISCHE ZEITSCHRIFT, 2004, 248 (02) :423-443
[2]   Multi-bump solutions for Choquard equation with deepening potential well [J].
Alves, Claudianor O. ;
Nobrega, Alannio B. ;
Yang, Minbo .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (03)
[3]   Existence and concentration of ground state solutions for a critical nonlocal Schrodinger equation in R2 [J].
Alves, Claudianor O. ;
Cassani, Daniele ;
Tarsi, Cristina ;
Yang, Minbo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (03) :1933-1972
[4]   Investigating the multiplicity and concentration behaviour of solutions for a quasi-linear Choquard equation via the penalization method [J].
Alves, Claudianor O. ;
Yang, Minbo .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (01) :23-58
[5]   Existence of semiclassical ground state solutions for a generalized Choquard equation [J].
Alves, Claudianor O. ;
Yang, Minbo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (11) :4133-4164
[6]  
[Anonymous], 2001, ANALYSIS-UK
[7]   A critical fractional equation with concave convex power nonlinearities [J].
Barrios, B. ;
Colorado, E. ;
Servadei, R. ;
Soria, F. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (04) :875-900
[8]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[9]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[10]   EXISTENCE OF A NONTRIVIAL SOLUTION TO A STRONGLY INDEFINITE SEMILINEAR EQUATION [J].
BUFFONI, B ;
JEANJEAN, L ;
STUART, CA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (01) :179-186