Role of Metabolic H2O2 Generation

被引:569
|
作者
Sies, Helmut [1 ,2 ]
机构
[1] Univ Dusseldorf, Inst Biochem & Mol Biol 1, D-40225 Dusseldorf, Germany
[2] Univ Dusseldorf, Leibniz Res Inst Environm Med, D-40225 Dusseldorf, Germany
关键词
Aquaporin; Glutathione Peroxidase; Hydrogen Peroxide; Insulin; Mitochondria; NADPH Oxidase; Peroxiredoxin; Redox; Catalase; Second Messenger; HYDROGEN-PEROXIDE PRODUCTION; PERFUSED-RAT-LIVER; AQUAPORINS FACILITATE; SUPEROXIDE-PRODUCTION; ANTIOXIDANT DEFENSE; FLUORESCENT-PROBES; REDOX REGULATION; NAD(P)H OXIDASE; COMPOUND-I; PROTEIN;
D O I
10.1074/jbc.R113.544635
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Hydrogen peroxide, the nonradical 2-electron reduction product of oxygen, is a normal aerobic metabolite occurring at about 10 nm intracellular concentration. In liver, it is produced at 50 nmol/min/g of tissue, which is about 2% of total oxygen uptake at steady state. Metabolically generated H2O2 emerged from recent research as a central hub in redox signaling and oxidative stress. Upon generation by major sources, the NADPH oxidases or Complex III of the mitochondrial respiratory chain, H2O2 is under sophisticated fine control of peroxiredoxins and glutathione peroxidases with their backup systems as well as by catalase. Of note, H2O2 is a second messenger in insulin signaling and in several growth factor-induced signaling cascades. H2O2 transport across membranes is facilitated by aquaporins, denoted as peroxiporins. Specialized protein cysteines operate as redox switches using H2O2 as thiol oxidant, making this reactive oxygen species essential for poising the set point of the redox proteome. Major processes including proliferation, differentiation, tissue repair, inflammation, circadian rhythm, and aging use this low molecular weight oxygen metabolite as signaling compound.
引用
收藏
页码:8735 / 8741
页数:7
相关论文
共 50 条
  • [1] The thioredoxin and glutathione-dependent H2O2 consumption pathways in muscle mitochondria: Involvement in H2O2 metabolism and consequence to H2O2 efflux assays
    Munro, Daniel
    Banh, Sheena
    Sotiri, Emianka
    Tamanna, Nahid
    Treberg, Jason R.
    FREE RADICAL BIOLOGY AND MEDICINE, 2016, 96 : 334 - 346
  • [2] Disorders of H2O2 generation
    Muzza, Marina
    Fugazzola, Laura
    BEST PRACTICE & RESEARCH CLINICAL ENDOCRINOLOGY & METABOLISM, 2017, 31 (02) : 225 - 240
  • [3] The Role of Peroxiredoxins in the Transduction of H2O2 Signals
    Rhee, Sue Goo
    Woo, Hyun Ae
    Kang, Dongmin
    ANTIOXIDANTS & REDOX SIGNALING, 2018, 28 (07) : 537 - 557
  • [4] Doxorubicin is a photocatalyst for the generation of H2O2
    Nawara, Krzysztof
    Krysinski, Pawel
    Blanchard, G. J.
    RSC ADVANCES, 2012, 2 (10) : 4059 - 4061
  • [5] Inhibitory and enhancing effects of NO on H2O2 toxicity:: Dependence on the concentrations of NO and H2O2
    Rauen, Ursula
    Li, Tongju
    De Groot, Herbert
    FREE RADICAL RESEARCH, 2007, 41 (04) : 402 - 412
  • [6] Estimation of H2O2 gradients across biomembranes
    Antunes, F
    Cadenas, E
    FEBS LETTERS, 2000, 475 (02) : 121 - 126
  • [7] Potential role of H2O2 in chemoreception in the cat carotid body
    Osanai, S
    Mokashi, A
    Rozanov, C
    Buerk, DG
    Lahiri, S
    JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM, 1997, 63 (1-2): : 39 - 45
  • [8] A metabolic model describing the H2O2 elimination by mammalian cells including H2O2 permeation through cytoplasmic and peroxisomal membranes:: comparison with experimental data
    Makino, N
    Sasaki, K
    Hashida, K
    Sakakura, Y
    BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2004, 1673 (03): : 149 - 159
  • [9] The quantitative measurement of H2O2 generation in isolated mitochondria
    Barja, G
    JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 2002, 34 (03) : 227 - 233
  • [10] Electrocatalytic H2O2 generation for disinfection
    Zeng, Yachao
    Wu, Gang
    CHINESE JOURNAL OF CATALYSIS, 2021, 42 (12) : 2149 - 2163