The Borsuk-Ulam-property, Tucker-property and constructive proofs in combinatorics

被引:10
作者
de Longueville, Mark
Zivaljevic, Rade T.
机构
[1] Free Univ Berlin, Fachbereich Math, D-14195 Berlin, Germany
[2] SANU, Math Inst, Belgrade 11001, Serbia Monteneg
关键词
Borsuk-Ulam-property; Tucker-property; Borsuk-Ulam-theorem; consensus partitions; constructive proofs;
D O I
10.1016/j.jcta.2005.08.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article is concerned with a general scheme on how to obtain constructive proofs for combinatorial theorems that have topological proofs so far. To this end the combinatorial concept of Tucker-property of a finite group G is introduced and its relation to the topological Borsuk-Ularn-property is discussed. Applications of the Tucker-property in combinatorics are demonstrated. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:839 / 850
页数:12
相关论文
共 27 条
[1]   SPLITTING NECKLACES [J].
ALON, N .
ADVANCES IN MATHEMATICS, 1987, 63 (03) :247-253
[2]  
Alon N., 1990, P INT C MATH KYOT JA, VII, P1421
[3]  
[Anonymous], 2004, PROOFS BOOK
[4]   A GENERALIZATION OF CARATHEODORYS THEOREM [J].
BARANY, I .
DISCRETE MATHEMATICS, 1982, 40 (2-3) :141-152
[5]  
BARANY I, B SOC MATH STUDIES, V6, P11
[6]   ON THE EXISTENCE OF BORSUK-ULAM THEOREMS [J].
BARTSCH, T .
TOPOLOGY, 1992, 31 (03) :533-543
[7]  
BLAGOJEVIC PVM, ARXIVMATH0403161
[8]  
Bredon G. E., 1993, GRADUATE TEXTS MATH, V139
[9]   A CONSTRUCTIVE PROOF OF TUCKER COMBINATORIAL LEMMA [J].
FREUND, RM ;
TODD, MJ .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1981, 30 (03) :321-325
[10]  
Fulton W., 1991, Representation Theory, a first course