共 100 条
Large-scale analysis reveals populational contributions of cortical spike rate and synchrony to behavioural functions
被引:17
作者:
Kimura, Rie
[1
,2
,3
,4
]
Saiki, Akiko
[1
,2
]
Fujiwara-Tsukamoto, Yoko
[1
,2
,5
,6
]
Sakai, Yutaka
[1
,2
]
Isomura, Yoshikazu
[1
,2
]
机构:
[1] Tamagawa Univ, Brain Sci Inst, Tokyo, Japan
[2] JST CREST, Tokyo, Japan
[3] Natl Inst Nat Sci, Div Visual Informat Proc, Natl Inst Physiol Sci, Okazaki, Aichi, Japan
[4] SOKENDAI Grad Univ Adv Studies, Dept Physiol Sci, Okazaki, Aichi, Japan
[5] Doshisha Univ, Lab Neural Circuitry, Grad Sch Brain Sci, Kyoto, Japan
[6] Hagoromo Univ Int Studies, Fac Human Life Studies, Dept Food & Nutr, Osaka, Japan
来源:
JOURNAL OF PHYSIOLOGY-LONDON
|
2017年
/
595卷
/
01期
关键词:
cortical spike synchronization;
forelimb movement;
multiple single-unit recording;
SINGLE-NEURON STIMULATION;
PRIMARY MOTOR CORTEX;
FRONTAL-CORTEX;
CORTICOCORTICAL CONNECTIONS;
DOPAMINERGIC PROJECTIONS;
PYRAMIDAL CELLS;
NETWORK;
INFORMATION;
DYNAMICS;
MEMORY;
D O I:
10.1113/JP272794
中图分类号:
Q189 [神经科学];
学科分类号:
071006 ;
摘要:
Spike synchrony within a period of several milliseconds in presynaptic neurons enables effective integration of functional information in the postsynaptic neuron. However, few studies have systematically analysed the population-wide relationships between spike synchrony and behavioural functions. Here we obtained a sufficiently large amount of spike data among regular-spiking (putatively excitatory) and fast-spiking (putatively inhibitory) neuron subtypes (>23,000 pairs) by multiple single-unit recording from deep layers in motor cortical areas (caudal forelimb area, rostral forelimb area) in rats performing a forelimb movement task. After holding a lever, rats pulled the lever either in response to a cue tone (external-trigger trials) or spontaneously without any cue (internal-trigger trials). Many neurons exhibited functional spike activity in association with forelimb movements, and the preference of regular-spiking neurons in the rostral forelimb area was more biased toward externally triggered movement than that in the caudal forelimb area. We found that a population of neuron pairs with spike synchrony does exist, and that some neuron pairs exhibit a dependence on movement phase during task performance. However, the population-wide analysis revealed that spike synchrony was statistically independent of the movement phase and the spike rate-based preferences of the pair for behavioural functions, whereas spike rates were clearly dependent on the movement phase. In fact, mutual information analyses revealed that the contribution of spike synchrony to the behavioural functions was small relative to the contribution of spike rate. Our large-scale analysis revealed that cortical spike rate, rather than spike synchrony, contributes to population coding for movement.
引用
收藏
页码:385 / 413
页数:29
相关论文