The role of copper twin boundaries in cryogenic indentation-induced grain growth

被引:21
作者
Brons, J. G. [1 ]
Hardwick, J. A. [1 ]
Padilla, H. A., II [2 ]
Hattar, K. [2 ]
Thompson, G. B. [1 ]
Boyce, B. L. [2 ]
机构
[1] Univ Alabama, Dept Met Engn, Tuscaloosa, AL 35487 USA
[2] Sandia Natl Labs, Albuquerque, NM 87185 USA
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2014年 / 592卷
关键词
Microindentation; Grain growth; Twinning; Coincidence lattice; Precession enhanced diffraction; IN-SITU OBSERVATION; MOLECULAR-DYNAMICS; THIN-FILMS; DEFORMATION; STABILITY; RECOVERY; HARDNESS;
D O I
10.1016/j.msea.2013.11.005
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanostructured Cu films with and without a high density of twins were indented at approximately 77 K with a load of 0.5 N. Utilizing precession-enhanced electron diffraction in the transmission electron microscope, the crystallographic texture, grain size, and grain-to-grain misorientation were quantified. In both orientations, the nanotwinned Cu underwent grain growth in the pile-up region of the indent, with the < 100 > oriented nanotwinned Cu having marked increases in the Sigma 3 and Sigma 5 boundary fractions as compared to the < 111 > orientated nanotwinned Cu. The Cu film without twin boundaries predominately experienced grain distortion and refinement. The twinned grain structure seems to facilitate the observed grain growth, either as a result of the increased mobility of the twin boundaries through a complex mechanically-induced detwinning mechanism and/or microstructure dependent dynamic recrystallization. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:182 / 188
页数:7
相关论文
共 44 条
  • [31] High spatial resolution semi-automatic crystallite orientation and phase mapping of nanocrystals in transmission electron microscopes
    Moeck, P.
    Rouvimov, S.
    Rauch, E. F.
    Veron, M.
    Kirmse, H.
    Hausler, I.
    Neumann, W.
    Bultreys, D.
    Maniette, Y.
    Nicolopoulos, S.
    [J]. CRYSTAL RESEARCH AND TECHNOLOGY, 2011, 46 (06) : 589 - 606
  • [32] Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy
    Olmsted, David L.
    Foiles, Stephen M.
    Holm, Elizabeth A.
    [J]. ACTA MATERIALIA, 2009, 57 (13) : 3694 - 3703
  • [33] Grain boundary energy anisotropy: a review
    Rohrer, Gregory S.
    [J]. JOURNAL OF MATERIALS SCIENCE, 2011, 46 (18) : 5881 - 5895
  • [34] Grain growth behavior at absolute zero during nanocrystalline metal indentation
    Sansoz, F.
    Dupont, V.
    [J]. APPLIED PHYSICS LETTERS, 2006, 89 (11)
  • [35] Effect of grain boundary engineering on microstructural stability during annealing
    Schlegel, Scott M.
    Hopkins, Sharla
    Frary, Megan
    [J]. SCRIPTA MATERIALIA, 2009, 61 (01) : 88 - 91
  • [36] Studies of grain orientations and grain boundaries in polycrystalline SrTiO3
    Shih, Shao-Ju
    Dudeck, Karleen
    Choi, Si-Young
    Baeurer, Michael
    Hoffmann, Michael
    Cockayne, David
    [J]. INTERFACIAL NANOSTRUCTURES IN CERAMICS: A MULTISCALE APPROACH, 2008, 94
  • [37] In situ site-specific specimen preparation for atom probe tomography
    Thompson, K.
    Lawrence, D.
    Larson, D. J.
    Olson, J. D.
    Kelly, T. F.
    Gorman, B.
    [J]. ULTRAMICROSCOPY, 2007, 107 (2-3) : 131 - 139
  • [38] Molecular dynamics simulations of rate-dependent grain growth during the surface indentation of nanocrystalline nickel
    Tucker, Garritt J.
    Foiles, Stephen M.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 571 : 207 - 214
  • [39] VARIN RA, 1988, MAT SCI ENG A-STRUCT, V101, P221, DOI 10.1016/0921-5093(88)90068-8
  • [40] Detwinning mechanisms for growth twins in face-centered cubic metals
    Wang, J.
    Li, N.
    Anderoglu, O.
    Zhang, X.
    Misra, A.
    Huang, J. Y.
    Hirth, J. P.
    [J]. ACTA MATERIALIA, 2010, 58 (06) : 2262 - 2270