Stabilized Lagrange multiplier methods for bilateral elastic contact with friction

被引:40
作者
Heintz, P [1 ]
Hansbo, P [1 ]
机构
[1] Chalmers Univ Technol, Dept Appl Mech, SE-41296 Gothenburg, Sweden
关键词
contact; non-matching grids; stabilized Lagrange multipliers; friction;
D O I
10.1016/j.cma.2005.09.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In most finite element (FE) codes contact is checked only at the nodes, corresponding to the use of pointwise constraints. However, this approach might not be stable in case the bodies coming into contact have non-matching grids at the contact interface. To alleviate this problem, we propose a stabilized Lagrange multiplier method, based on a global polynomial multiplier, for the finite element solution of (non)linear elastic contact problems with non-matching grids. In particular, our approach allows us to avoid integrating products of different finite element basis functions on the surface meshes at the contact zone. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:4323 / 4333
页数:11
相关论文
共 16 条
[1]   THE FINITE-ELEMENT METHOD WITH LAGRANGE MULTIPLIERS ON THE BOUNDARY - CIRCUMVENTING THE BABUSKA-BREZZI CONDITION [J].
BARBOSA, HJC ;
HUGHES, TJR .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1991, 85 (01) :109-128
[2]   FINITE-ELEMENT APPROXIMATION OF THE DIRICHLET PROBLEM USING THE BOUNDARY PENALTY METHOD [J].
BARRETT, JW ;
ELLIOTT, CM .
NUMERISCHE MATHEMATIK, 1986, 49 (04) :343-366
[3]   A finite element method for domain decomposition with non-matching grids [J].
Becker, R ;
Hansbo, P ;
Stenberg, R .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (02) :209-225
[4]   Extension of the mortar finite element method to a variational inequality modeling unilateral contact [J].
Ben Belgacem, F ;
Hild, P ;
Laborde, P .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (02) :287-303
[5]  
Cattaneo C., 1938, RECONDITI DELL ACCAD, V27, P434
[6]  
Cattaneo C., 1938, REND ACCAD NAZ LINCE, V27, P474
[7]  
Cattaneo C., 1938, REND ACCAD NAZ LINCE, V27, P342
[8]   Stability and patch test performance of contact discretizations and a new solution algorithm [J].
El-Abbasi, N ;
Bathe, KJ .
COMPUTERS & STRUCTURES, 2001, 79 (16) :1473-1486
[9]   A Lagrange multiplier method for the finite element solution of elliptic interface problems using non-matching meshes [J].
Hansbo, P ;
Lovadina, C ;
Perugia, I ;
Sangalli, G .
NUMERISCHE MATHEMATIK, 2005, 100 (01) :91-115
[10]   Discontinuous Galerkin and the Crouzeix-Raviart element: Application to elasticity [J].
Hansbo, P ;
Larson, MG .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (01) :63-72