On moduli spaces of polarized Enriques surfaces

被引:7
作者
Knutsen, Andreas Leopold [1 ]
机构
[1] Univ Bergen, Dept Math, Postboks 7800, N-5020 Bergen, Norway
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2020年 / 144卷
关键词
Enriques surfaces; Moduli spaces; Hilbert schemes; Degenerations; K3; SURFACES; PROJECTIVE DEGENERATIONS; LINE BUNDLES; EMBEDDINGS; THEOREM; PROOF;
D O I
10.1016/j.matpur.2020.10.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that, for any g >= 2, the etale double cover rho(g) : epsilon(g) -> (epsilon) over cap (g) from the moduli space epsilon(g) of complex polarized genus g Enriques surfaces to the moduli space (epsilon) over cap (g) of numerically polarized genus g Enriques surfaces is disconnected precisely over irreducible components of (epsilon) over cap (g) parametrizing 2-divisible classes, answering a question of Gritsenko and Hulek [13]. We characterize all irreducible components of epsilon(g) in terms of a new invariant of line bundles on Enriques surfaces that generalizes the phi-invariant introduced by Cossec [8]. In particular, we get a one-to-one correspondence between the irreducible components of epsilon(g) and 11-tuples of integers satisfying particular conditions. This makes it possible, in principle, to list all irreducible components of epsilon(g) for each g >= 2. (C) 2020 The Author. Published by Elsevier Masson SAS.
引用
收藏
页码:106 / 136
页数:31
相关论文
共 28 条
[1]  
BARTH WP, 2004, ERGEBNISSE MATH IHRE, V4
[2]   The moduli space of Enriques surfaces with a polarization of degree 4 is rational [J].
Casnati, G .
GEOMETRIAE DEDICATA, 2004, 106 (01) :185-194
[3]  
Catanese F., 1993, J ALGEBRAIC GEOM, V2, P389
[4]   PROJECTIVE DEGENERATIONS OF K3 SURFACES, GAUSSIAN MAPS, AND FANO THREEFOLDS [J].
CILIBERTO, C ;
LOPEZ, A ;
MIRANDA, R .
INVENTIONES MATHEMATICAE, 1993, 114 (03) :641-667
[5]  
Ciliberto C., NONEMPTINESS S UNPUB
[6]  
Ciliberto C., ARXIV180910569
[7]   Moduli of curves on Enriques surfaces [J].
Ciliberto, Ciro ;
Dedieu, Thomas ;
Galati, Concettina ;
Knutsen, Andreas Leopold .
ADVANCES IN MATHEMATICS, 2020, 365
[8]  
Cossec F., 1989, Progress in Mathematics, V76, px+397
[9]   ON THE PICARD GROUP OF ENRIQUES SURFACES [J].
COSSEC, FR .
MATHEMATISCHE ANNALEN, 1985, 271 (04) :577-600
[10]  
Dolgachev IV, 2016, ADV STU P M, V69, P1